(PHYSICS: BASIC MECHANICS)

				Answer
				Key
1)	What is the magnitude of the unit vector?	L.		A
	A. 1	Β.	0	_
-	C. 2	D.	None of these	
2)	What is the magnitude of the vector, $12i - 8j - 24k$?	L.		В
	A. 18	В.	28	_
	C. [38	р.	48	
3)	What is the difference between a position vector and unit vector	tor?		D
	A. Position vector has magnitude = 1 and direction, while	В.	Position vector has magnitude = 0 and direction, while	
	the unit vector has magnitude = 0 and no direction	_	unit vector has magnitude = 0 and no direction	_
	C. Position vector has some magnitude and direction,	р.	Position vector has some magnitude and direction, while	
	while the unit vector has magnitude = 0 and no		the unit vector has magnitude = 1 and a specified 1	
		Ļ		D
4)	What is not the condition for the equilibrium in three dimen	sior	al system of axis?	
	A. FX=0	В.		
5	$C. \sum FZ=0$	р.	∑F≠0	
5)	What does the moment of the force measure?	_		A
	A. The tendency of rotation of the body along any axis	В.	The moment of inertia of the body about any axis	
	C. The couple moment produced by the single force acting	D.	The total work is done on the body by the force	
0	on the body	11	1	0
6)	The tendency of rotation of the body along any axis is also c			C
	A. Moment of inertia	В.	Moment of couple	
	C. Torque	Ρ.	Force	
	Which of the following is true?	Ъ		A
	A. Total moment of various forces acting on the body is	В.	Total moment of various forces acting on the body is the	
	the vector sum of all moments		algebraic sum of all moments	
	C. I otal moment of various forces acting on the body is	р.	I otal moment of various forces acting on the body is the	
	always zero		vector sum of all moments which is perpendicular to each	
0)	What do an Norston's third law states?		other forces	D
8)	The acts of change of memory is a real to the former	1		В
	A. A. annlied	Β.	For every reaction, there is an opposite reaction	
	The heady tends to be rotated if the force is emplied	_		-
	C. tengontially	D.	The body is rest until a force is applied	
0)	Moment of inertia of solid sphere is	-	1	C
<i>э</i>)	Noment of mertia of solid sphere is $\Lambda = \frac{2}{Mr^2}$	Þ	$16 Mv^2$	C
	$\begin{array}{c} \mathbf{A}, & \sqrt{3} \ \mathbf{M} \\ \mathbf{C}, & \mathbf{M} \\ 2 \end{array}$	D.	$\frac{72}{10}$	
10)	C. put	μ.	$\mu r / 2$	D
10)	A Algebraic sum of horizontal components of all the	Þ	Algebraic sum of vertical components of all the forces	D
	A. Argebraic sum of nonzontal components of an me	р.	must be zero	
	C Algebraic sum of the moments of the forces about a	h	A11(A) (B) and (C)	_
	noint must be zero	ρ.		
11)	Newton's law of Collision of elastic bodies states that when the		l noving bodies collide each other, their velocity of	C
11)	reparation	10%	noving boules confide each other, then velocity of	C
	A Is directly proportional to their velocity of approach	B	Is inversely proportional to their velocity of approach	
	C Bears a constant ratio to their velocity of approach	D.	Is equal to the sum of their velocities of approach	
12)	The angle of projection at which the horizontal range and may	vim	um height of a projectile are equal is	D
12)	$ A 36^{\circ}$	R	45°	
	C 56°	þ.	76°	-
13)	ר, איז	P.	her of the forces, then the angle between the two forces is	n
15)	$ A = 10^{\circ}$	R	60°	
		þ.	120°	-
I		μ.	120	<u> </u>

14)	14) The maximum acceleration of a particle moving with simple harmonic motion is			
	Α. ω	Β.	ωr	
	C. $\omega^2 r$	D.	ω/r	
15)	The rate of change of displacement of a body is called		l .	А
ŕ	A. Velocity	Β.	Acceleration	
	C. Momentum	D.	None of these	
16)	When work is done in moving a particle around a closed loor	o in	a field is zero, forces in the field are called	С
,	A. Zero forces	Β.	Non-Conservative forces	
	C. Conservative forces	D.	Viscous forces	
17)	Substances that elongate considerably and undergo plastic de	for	mation before they break are known as	С
,	A. Brittle substances	Β.	Breakable substances	-
	C. Ductile substances	D.	Elastic substances	-
18)	Tensile stress is equal to	μ.		А
10)	A Force per unit area	B	Force per unit volume	
	C Extension per unit length	b.	Extension per unit area	
19)	The radial component of velocity for a particle moving in a c	ircı	lar path is	D
1))	A Constant	R	Radius itself	
	C Variable	<u>b</u> .	Zero	-
20)	Voung's modulus formula is	р.	2210	B
20)	A Tangila strain/tangila strass	B	Tansila strass/tansila strain	Б
	C Tangilo strong × tangilo strong	р. Б	I ongth/orog	
21)	Standing ways is also called	ρ.	Length/area	۸
21)	A Stationery waves	Þ	Statia wayas	A
	A. Stationary waves	<u>р</u> .	Static waves	_
22)	C. Progressive waves	μ.	None of these	
22)	Forces are called concurrent when their lines of action meet 1	n b		A
	A. One point	В.	Two points	_
	C. Plane	р.	Perpendicular planes	
23)	Effect of a force on a body depends upon	_		D
	A. Magnitude	В.	Direction	
	C. Position or line of action	D.	All these	
24)	Which of the following is not the unit of distance?	_	h	В
	A. Angstrom	В.	Milestone	_
	C. Micron	D.	Millimeter	
25)	The weight of a body is due to	-	L	В
	A. Centripetal force of earth	В.	Gravitational force of attraction towards the centre of the	
			earth	
	C. Forces experienced by body in atmosphere	D.	Force of attraction experienced by particles	
26)	Which of the following is a vector quantity	-	L	С
	A. Energy	Β.	Mass	
	C. Momentum	D.	Angle	
27)	The coefficient of friction depends on		1	D
	A. Area of contact	Β.	Shape of surfaces	
	C. Strength of surfaces	D.	Nature of surface	
28)	The escape velocity from the surface of the earth is approxim	ate	ly equal to	В
	A. 9.81 km/sec	Β.	11.2 km/sec	
	C. 14 km/sec	D.	22 km/sec	
29)	Coulomb friction is the friction between		·	А
	A. Bodies having relative motion	Β.	Two dry surfaces	
	C. Two lubricated surfaces	D.	Solids and liquids	
30)	The maximum frictional force which comes into play when a	bo	dy just begins to slide over another surface is called	А
- /	A. Limiting friction	Β.	Sliding friction	1
	C. Rolling friction	D.	Kinematic friction	1
31)	A body moves, from rest with a constant acceleration of 5 m	per	sec. The distance covered in 5 sec is most nearly	В
21)	A. 38 m	B	62.5 m	
	C 96 m	<u> </u>	240 m	-
32)	Which of the following is not the unit of energy	μ.		С
1 241	The men of the rono wing to not the unit of chergy			

	A. Kg-m	В. K	Ical		
	C. Watts	D. W	Vatt hours		
33)	The product of mass and velocity is known as			D	
	A. Work	B. M	Ioment		
	C. Impulse	D. M	Iomentum		
34)	The velocity of a mass of 5 kg after falling a height of 5 m fro	rom res	st would be approximately equal to	В	
,	A. 5 m/sec	B. 10	0 m/sec	-	
	C. 25 m/sec	D. 50	0 m/sec		
35)	A ball is thrown up. The sum of kinetic and potential energies	ies wil	ll be maximum at	D	
	A. Ground	B. H	Jighest point		
	C. In the centre while going up	D. A	At all the points	-	
36)	Energy is defined as	P . 11		В	
20)	A Rate of doing work	BC	anacity of doing work		
	C Power of doing work	D A	Il of the above		
37)	Moment of inertia of a body does not depend upon	p. 71		Δ	
51)	A Angular velocity of body	B M	lass of the body		
	C Distribution of mass in the body		Association of the body		
38)	A wound watch spring possesses energy stored in the form of	p. A	Axis of fotation of the body	C	
56)	A Winetic energy	л b b	lotantial anargy		
	A. Killetic ellergy	D. F	Acchanical kinetia anarov	_	
20)	C. Mechanical potential energy	D. IV	hechanical kinetic energy	D	
39)	Nomentum is defined as	ББ	Keen and the disc		
	A. Force x distance	B. M	Aass x acceleration	-	
10)	C. Mass x time	D. M	lass x velocity	D	
40)	Which of the following have same units	b b	· · · · ·	D	
	A. Momentum and impulse	В. W	Vork and kinetic energy	_	
	C. Kinetic energy and potential energy	D. A	ll these		
41)	41) Rate of change of momentum is proportional to the				
	A. Displacement	B. V	Velocity	-	
	C. Acceleration	D. Fe	Force		
42)	If the momentum of a given body is doubled, its kinetic energy	gy wil	11	В	
	A. Increase by 2 times	B. In	ncrease by four times		
	C. Remain same	D. G	Get halved		
43)	For a particle moving with a simple harmonic motion, the free	equenc	cy is	В	
	A. Directly proportional to periodic time	B. In	nversely proportional to periodic time		
	C. Inversely proportional to its angular velocity	D. D	Directly proportional to its angular velocity		
44)	In simple harmonic motion, acceleration of a particle is propo	ortiona	al to	В	
	A. Rate of change of velocity	B. D	Displacement		
	C. Velocity	D. D	Direction		
45)	A body is thrown vertically upwards from the ground with a s	speed	of 980 cm/sec. It will rise to a height of	В	
	A. 980 cm	B. 49	90 cm		
	C. 49 cm	D. 10	0 cm		
46)	When a body falls freely under gravitational force, it possesse	ses		С	
ĺ ĺ	A. Maximum weight	B. M	/inimum weight	-	
	C. No weight	D. N	Jo effect on its weight		
47)	Which of the following remains constant during flight of a pr	roiecti	ile	В	
,	A. Angle of projectile	B. H	Iorizontal component of velocity		
	C Vertical component of velocity	$\frac{\mathbf{p}}{\mathbf{p}}$	um of its kinetic energy and potential energy		
(18)	The velocity of a satellite in order that it remains in a particul	lar orb	bit depends upon	C	
-0)	A Mass of the satellite	B In	nitial velocity of projection		
	C Distance of satellite from the centre of earth	$\frac{D}{D}$ In	initial velocity of projection	-	
40)	A satellite is kent on moving in its orbit around the earth due	μ.μn	iciliation of the plane of the oron with equatorial plane	D	
(47)	A Contribugal force		Contrinated force	D	
	A. Centifugar force		control torce	-	
50)	C. Oravitational force	<u>μ. κ</u>	limonoion?	D	
30)	which of the following pairs of physical quantities have ident				
	A. priomentum and impulse	<u>в</u> . М	vork and energy	4	
	C. 1 orque and energy	D. A	All of the above		

51)	51) The escape velocity of a body on earth				
	A. Increases with the increase of its mass	Β.	Decreases with the increase of its mass		
	C. Remains unchanged with variation of mass	D.	Varies as the square of the change in mass		
52)	A simple pendulum is set into oscillations. The bob of the per	ndu	lum comes to rest after some time due to	А	
	A. Friction of air	Β.	Its mass		
	C. Tension in the string	D.	Gravity		
53)	The energy of a damped oscillator			С	
	A. Decreases linearly with time	Β.	Increases linearly with time		
	C. Decreases exponentially with time	D.	Increases exponentially with time		
54)	The type of motion when the acceleration is proportional to d	lispl	acement is called	D	
	A. Translation	Β.	Rotational		
	C. Gyroscopic	D.	Simple harmonic		
55)	Which of the following is not a scalar quantity			С	
	A. Time	Β.	Weight of body		
	C. Temperature	D.	Mass of body		
56)	If the momentum of a given particle is doubled then its kineti	ic ei	nergy will	С	
	A. Be halved	Β.	Be doubled		
	C. Be quadrupled	D.	Be same		
57)	For a vector F, $Fcos\beta$ is equal to zero. What does this refer to	?		А	
	A. Y-axis component is zero	Β.	X-axis component is zero		
	C. $\beta = 180^{\circ}$	D.	Z-axis component is zero		
58)	What if we multiply a scalar to the unit vector?			А	
	A. The magnitude will change accordingly	Β.	The direction will change accordingly		
	The direction will change by a factor of the square root	h	The magnitude will not change accordingly		
	C. of the scalar	р.	The magnitude will not change accordingly		
59)	The tendency of rotation of the body along any axis is also cal	lled	-	D	
	A. Moment of couple	Β.	Moment of inertia		
	C. Force	D.	Torque		
60)	When a person opens a door, he applies			В	
	A. Force	В.	Torque		
	C. Moment	D.	None of the above		

PHYSICS: CLASSICAL MECHANICS)

					Answer Key
61)	N	ewtonian Mechanics is also known as			
					C
	А.	Particle Mechanics	В.	Wave Mechanics	C
					_
	C.	Classical Mechanics	D.	None	
62)	Cl	assical Mechanics is applied to the bodies whose spe	eed	remainin comparison with the speed of light.	
	A.	Small	В.	large	A
	C.	Comparable	D.	none	
63)		is applied to the bodies whose speeds are o	com	parable with the speed of light.	
	A.	Classical Mechanics	Β.	Quantum Mechanics	A
	C.	Relativisitics Mechanics	D.	none	
64)		is applied to the physical system of molecu	lar	or smaller size.	
	A.	Classical Mechanics	Β.	Quantum Mechanics	B
	a				•

	C. Relativisitics Mechanics	D. none	
65)	Conservative forces have		
			р
	A. Velocity	B. Co-ordinates	D
	C. both a & B	D. None	
66)	Non-Conservative forces depends on		
	A. Velocity	B. Co-ordinates	С
	C. hoth a & B	D. None	
67)	Holonomics Constraints can be expressed in terms of		
,			
	A. time and velocity	B. only time	D
	C. only coordinates	D. co-ordinates and time	
68)	If q _i is cyclic in lagrangian then		
	A Dis not concorred	P. D. is conconved	В
	A. Pjis hot conserved	p. p _j is conserved	
69)	If no force acting on a particle then the total linear mo	p. none	
0))			
	A. Zero	B. not conserve	D
	C. maximum	D. conserve	
70)	If no torque is acting on a particle then the total angu	lar momentum is—	
			C
	A. Zero	B. minimum	C
	C. constant	D. not conserve	
71)	The field in which work done is zero is called field	d.	
	A Coservative	B non-conservative	А
72)	If the forces acting on a particle is conserve then the t	total energy will be	
	in the forces define on a particle is conserve their the		
	A. T+V	В. Т-V	А
	C. ΤΧV	D. None	
73)	If the constraint is not expressed in form of equation the	en it is called constraint	
	A. Holonomic	B. Non-holonomic	В
	C. Scleronomous	D. none	
74)	Double pendulom has degree of freedom.		
	A Three	B four	С
	C two	D one	
75)	Single pendulom has degree of freedom		
	A. three	B. four	D
70	C. two	D. one	
/6)	A rod of length L lying in xy-plane hasdegree	e of freedom	
	A three	B four	А
	C. two	D. one	
77)	Virtual displacements are infinitesimal and	[·]p	
,			

	A. finite	Β.	instantaneous	В	
	C. infinite	D.	none		
78)	Principle of Virtual displacements is applicable to a sys	ter	n in the		
				a	
	A. Not in equilibrium	Β.	finite state	C	
	C. equilibrium state	D.	zero state		
79)	The Langrangian 'L' is expressed as				
				D	
	A. T+V	Β.	Т	D	
	C. V	D.	T-V		
80)	³⁰⁾ The usual expression for the conserved angular momentum in a central force problem is				
		1		Δ	
	A. $l=mr^2\theta$	Β.	/=m/r ² 0	Π	
	C. /=ĺ/k	D.	/=mr²ḋ /v		
81)	Hamilton's Principle states that any variation in the line	e iı	ntegral between two fixed points is		
		1		р	
	A. Maximum	Β.	zero	D	
	C. minimum	D.	Non-zero		
82)	Units of linear momentum is –				
		L.	2.2	C	
	A. kgm/s ²	В.	kg.m²/s²	C	
	C. kgm/s	D.	kgm²/s		
83)	The work done due to frictional force is always				
		L	I	р	
	A. zero.	В.	negative	D	
0.4)	C. Both a & b	D.	positive		
84)	If F(r) < 0 then the central force is	L		в	
	A. positive or attractive	В.	negative or attractive	D	
0.5)	C. positive or repulsive	D.	negative or repulsive	0	
85)	f F(r) >0 then the central force is	Ь		C	
		В.	negative or attractive		
	C. positive or repulsive	D.	negative or repulsive		
86)	In a central force angular momentum is always			D	
	A	Ь	NI		
	A. Zero	в. Б	NON-ZEFO		
87)	In a central force arial velocity is always	р.	constant		
51)	In a contral force and velocity is always				
	A. Constant	B.	None-zero	А	
	C. negative	D.	positive		
88)	The equation that is used to find shortest distance b	bet	ween two points on a given surface is known as		
	equation		1 0		
				В	
	A. Lagrangian	B.	Euler's lagrangian		
	C. Catenary	D.	None of these		
89)	Routh's Procedure deals with	<u> </u>			
Í					
	A. Polar Co-ordinates	В.	Generalized co-ordinates	С	
	C. cvclic co-ordinates	D.	none		
L	-,	1	·····-		

90) A particle of mass 5kg and velocity 3 cm/s has a momentum					
	A. 1 5kgm/s	B.	0.015kgm/s	D	
	C = 0.15 kgcm/s	D.	0.15kgm/s	-	
91)	If direction of (E' and (r' is reversed then torque is	р.	0.13Kg1173		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	A. remains unchanged	В.	also changed	A	
	C. magnitude changes	D.	none	-	
92)	In Conservative system the potential energy is		1		
				D	
	A. depends on velocity	В.	depends on coordinates	В	
	C. depends on time	D.	none		
93)	3) A rigid body possessesdegrees of freedom.				
	A. one	В.	two	D	
	C. four	D.	six		
94)	A 1200kg car moves down the road at 20 cm/s. What	is i	ts momentum.		
		b		Δ	
	A. [240kgm/s	В.	240kgcm/s	Λ	
0.5	C. [2400kgm/s	D.	24000kgcm/s		
95)	A skater moves with a constant velocity of 12km/s. If	her	momentum is 600kgm/s, what is its mass.		
		Þ	0.05kg	В	
	Π. /2Kg	р.	0.05kg		
	C. 50kg	D.	46kg	-	
96)	96) Rate of change of momentum is known as				
	A. Torque	В.	momentum	C	
	C. force	D.	none		
97)	A curve between two ponts along which a body can n	nov	e under gravity in shorter time than any other curve is		
	called			D	
	A. geodesics	Β.	Euler's lagrangian		
	C. Catenary	D.	brachistochrone		
98)	A 100kg body moving with velocity of 10cm/s has K.E.	•	•		
		Ъ	10000 1	А	
	A. [0.5]	В.	10000 J		
00)	C. 5000 J	р.	[0.05]		
""	I P is the momentum of an object of mass in the ex	хрп	ession P-72m has base units identical to		
	A. Energy	В.	Velocity	В	
	C. Power	D.	Force	-	
100)	What must change when a body is accelerating				
				D	
	A. force acting on a body	В.	mass of body	D	
	C. the speed of body	D.	velocity of body		
101)	Total weight of body acts				
	A. lat its one end	B.	at its other end	С	
	C. at its centre of gravity	<u> </u>	at its centre	-	
102)	If the force acting on a body is doubled then accolora	r. atio	n becomes		
102)		110			
	•			•	

	A. doubled	Β.	half	А	
	C. One fourth	D.	constant		
103)	A 57 kg woman runs up a flight of stairs having a rise o	of 4	.5m in 3.5 s. What average power must she supplied		
		-		Л	
	A. 722.2 W	Β.	718.2 W	В	
	C. 708.2 W	D.	24.2 W		
104)	A swimmer moves through the water at a speed of 0.22	2m/	s. The drag force opposing this motion is 110 N. How		
	much power is developed by the swimmer.			C	
	A. 20.4 W	Β.	26.2 W	C	
	C. 24.2 W	D.	16.3 W		
105)	1kWh=				
	A. 3.6 J	В.	3.6 KJ	D	
	C. 3.6 mJ	D.	3.6 MJ		
106)	1 rad=				
	A. 56.3	В.	57.3°	В	
	C. 61.7°	D.	67.3°		
107)	Which of the following relation is correct				
	A. 1Weber $m^{-2} = Nm^{-1} A^{-1}$	Β.	1T= 10 ⁴ GAUSS	D	
	C. 1 webm ⁻² = 1 Tesla	D.	ALL		
108)	108) Hamiltonian 'H' represent theenergy of the system				
				А	
	A. Total	Β.	zero		
	C. potential	D.	kinetic		
109)	The quantity $r^2\dot{\theta}/2$ represents the				
	A. Escape velocity	Β.	arial velocity	В	
	C. circular velocity	D.	none		
110)	f the moment arm and force lies in x-z plane. Then dire	cti	on of torque is		
	A. along y- axis	Β.	along x- axis	А	
	C. along z axis	D.	along x-y plane		
111)	When a conservative force does negative work or	۱a	body th potential of the body	В	
		F	l.		
	A. Decrease	<u>В.</u>	Increase		
	C. Kemain same	μ.	decreases when force is small and increases		
			when force is large		
112)	Due to the presence of central force arial velocity is			В	
	A. zero	В.	constant		
	C. Non-constant	D.	None of these		
113)	If $\frac{\partial H}{\partial t}=0$ Then			В	
	A the Hamiltonian is not necessarily a constant of	B	the Hamiltonian is a constant of motion, but it is not		
	motion, but it is necessarily the total energy of the	μ.	the manificulture is a considered of motion, but it is not		
	system		necessarily the total energy of the system		
	C None of these	h	Both a & h		
11.4	Composite of these and the server results of Charles	<u>P</u> .		Δ	
114)	Relativistic inechanics give the same results as Classic	aiiN		A	

	A. When the bodies treated at a speed approaching a speed of light	Β.	When applied to atomic or molecular system	
	C. None of these	D.	Both a & b	
115)	Constraints that can be expressed in terms of co-ordir	ate	es and time f(r ₁ ,r ₂ ,r ₃ ,,t)=0 are said to be	A
	A. Holonomic	Β.	Non-Holonomic	
	C. Scleronomous	D.	rheonomous	
116)	Scleronomous costraint means			В
	A. moving	Β.	stationary	
	C. Time independent	D.	Both a & c	
117)	Reheonomous costraint means			А
	A. moving	Β.	stationary	
	C. Time independent	D.	Both a & c	
118)	The study and description of the possible motions of m	ate	ial bodies is called	C
	A. dynamics	Β.	statics	
	C. kinematics	D.	none	
119)	The path which is cycloid is known as			В
	A. Catenary	Β.	Brachistochrone	
	C. cyclone	D.	. Helical	
120)	The torque depends upon:	•		С
	A. Magnitude of force	Β.	Magnitude of Displacement	
	C. Magnitude of force and Displacement	D.	none of these	

(BASIC QUANTUM/MODERN PHYSICS)

					Answer
					Key
121)	N	Iodern Physics mainly based upon			A
	A.	quantum physics	В.	newton physics	
	C.	classical physics	D.	nuclear physics	
122)	N	ature of radiation emitted by a body depends u	pon		С
	A.	mass	В.	volume	
	C.	temperature	D.	pressure	
123)	A	t high temperature, a body generally emits rad	iatio	ons of	А
	A.	shorter wavelength	Β.	longer wavelength	
	C.	lower frequency	D.	non of these	
124)	Α	n ideal black body is			D
	A.	Most efficient radiator	Β.	a perfect absorber of radiation	
	C.	a body whose absorptive power is unity	D.	all of these	
125)	B	lackbody energy distribution curves are the g	grap	bhs between	С
	A.	Temperature and intensity	В.	wavelength, temperature, and intensity	
	C.	wavelength and intensity	D.	wavelength and temperature	
126)	W	Vien's theory explains energy distribution in I	blac	k body for	В
	A.	larger wavelength	В.	shorter wavelength	
	C.	medium wavelength	D.	infinite wavelength	

¹²⁷⁾ The value of Stefen's constant is Wm ⁻² K ⁻⁴			
A. 3.67×10^{-8}	В.	5.67x10 ⁻⁸	
C. 7.67x10 ⁻⁸	D.	9.67x10 ⁻⁸	
128) According to Max Plank energy is released or	abs	orbed in discreat packets called	С
A. mesons	В.	positrons	
C. quanta	D.	non of these	
129) According to Max Plank the energy of quanta	is		D
A. $E=mc^2$	В.	E=mv ²	
C. E=h/f	D.	E=hf	
130) The Plank's constant has the dimensions			С
A. $[ML^2T^{-2}]$	В.	[MLT ⁻²]	
C. $[ML^2T^{-1}]$	D.	$[ML^{-2}T^{2}]$	
131) Abeam of red light and a beam of blue light h	ave	exactly the same energy. Which beam contains	В
the greater number of photons?			
A. blue	В.	red	
C. both a and b	D.	non of these	
132) A photon is always considered to be			В
A. at rest	В.	moving with speed of light	
C. moving with speed of electron	D.	moving with speed of sound	
133) The momentum of a photon is			А
A. $P = h/\lambda$	В.	$P = \lambda/h$	
C. P = hf	D.	P = mc2	
			D
An human eye can detect the electromagnetic	rad	ation of the type radiations.	D
A. Infrared	В.	Tar infrared	
$\begin{array}{c c} C & X - rays \\ \hline 125 & A & A & A \\ \hline \end{array}$	р.	red	р
133) A photon is considered to have	Ь		D
A. energy	В.	momentum	
C. wavelength and frequency	<u>p</u> .	all of these	•
¹³⁰⁾ The speed of photon as compared with the spe	eed o	of light is always	А
A. same	В.	less	
C. greater	D.	non of these	D
¹³⁷ The photo electric effect was explained by			В
A. Hertz	В.	Einstein	
C. Max Planck		Lummer and Pringshein	P
¹³⁸⁾ The maximum K.E of emitted photo electrons	dep	ends upon	D
A. the intensity of incident light	В.	frequency of incident light	
C. particular metal surface	D.	both b and c	
¹³⁹⁾ The no. of photo electrons emitted is directly	prop	ortional to the	В
A. frequency of incident light	В.	the intensity of incident light	
C. both a and b	D.	none of these	
¹⁴⁰⁾ There is certain frequency below which no ele	ectro	ons are emitted from the metal surface, this	В
frequency is known as frequency			
A. critical	В.	threshold	
C. maximum	D.	minimum	
¹⁴¹ The value of threshold frequency for different	met	als is	А

		_		
	A. different	Β.	same	
	C. zero	D.	none of these	
142)	When the light certain frequency falls on the m	eta	l surface, the electrons are ejected	В
	A. slowly	Β.	instantaneously	
	C. one by one	D.	none of these	
143)	Photoelectric effect is the converse process of			В
	A. LASER	В.	X-rays	
	C. pair production	D.	none of these	
144)	In photoelectric effect, if intensity of incident ra	adi	ation is increased, then there is increase in	D
	A. K.E of electrons	В.	number of protons	
	C. photoelectric current	D.	both b and c	
145)	The Photoelectric effect can be explained by			С
-	A. wave theory of light	Β.	special theory of relativity	
	C. quantum theory of light	D.	electromagnetic theory of light	
146)	A device based on Photoelectric effect is called			В
	A. photo diode	Β.	Photo cell	
	C. voltaic cell	D.	Photo cathode	
147)	In Compton shift, the factor h/moc is known as			А
	A. Compton wavelength	Β.	Compton frequency	
	C. Compton energy	D.	Compton mass	
148)	The angle of scattering for which the Compton	shi	ift is maximum is	D
	A. 0°	Β.	45°	
	C. 90°	D.	180°	
149)	The Compton effect conforms			В
	A. wave nature of light	Β.	particle nature of light	
	C. dual nature of light	D.	none of these	
150)	The process in which energy is converted into n	nat	ter is called	В
	A. Compton effect	В.	pair production	
	C. annihilation of matter	D.	photoelectric effect	
151)	For pair production, there must be conservation	n o	f	D
	A. mass	В.	energy	
	C. momentum	D.	all of these	
152)	Which of the following radiation has photons of	f m	aximum energy?	В
	A. x-rays	В.	γ-rays	
	C. microwaves	D.	none of these	
153)	The pair production and annihilation of matter	· ar	'e	В
	A. similar phenomenon	В.	opposite to each other	
	C. bases upon classical physics	D.	none of these	
154)	The wavelength of x-rays is of the order			С
	A. 10 ⁻³ m	В.	10 ⁻¹⁹ m	
	C. 10^{-10} m	D.	10 ⁻¹² m	
155)	De-broglie's hypothesis was conformed experim	ner	itally by	В
	A. Lummer and Primgsheim	В.	Davissan and Germer	
	C. Einstein and Max Plank	D.	Wien's and Stifean	
156)	De-broglie got noble prize for his work on		•	С
	A. wave nature of particles	Β.	corpuscular nature of particles	
	C. dual nature of particles	D.	all of these	

157) W	Which light emits greater no. of electrons from	a r	netal surface	А
A.	bright light	Β.	dim light	
C.	high frequency light	D.	low frequency light	
158) I I	n order to reduce uncertainty in momentum, o	ne	must use light of	А
А.	larger wavelength	Β.	shorter wavelength	
C.	any wavelength	D.	none of these	
159) T	he unit of Planks constant is			С
А.	volt	Β.	Js ⁻¹	
C.	Js	D.	Nm	
160) R	lest mass of photon is			А
A.	zero	В.	infinity	
C.	hf/c	D.	hc/m	
161) Th	e separation of ordinary white light into its co	mp	ponents by the use of prism or grating is called	-
А.	diffraction	В.	dispersion	В
C.	spectroscopy	D.	all of these	
162) W	Which of the following is an example of continu	iou	s spectra	А
А.	black body radiation spectrum	В.	molecular spectra	
C.	atomic spectrum	D.	none of these	
163) T	he spectral series were identified in the spectr	um	n of hydrogen by	D
А.	Einstein	В.	Compton	
C.	Planks	D.	J. J Balmer	
164) T	he spectrum of visible sunlight ranges from			С
А.	430nm-650nm	В.	600nm-900nm	
C.	400nm-700nm	D.	300nm-500nm	
165) T	he simplest spectrum is that of			В
А.	Oxygen	В.	hydrogen	
C.	nitrogen	D.	chlorine	
166) B	almer series contains the wavelength in the			А
A.	visible region	Β.	UV region	
C.	IR region	D.	none of these	
167) B	rackett and Pfund series of spectral lines lies i	in t	he	D
А.	visible region	В.	UV region	
C.	IR region	D.	far IR region	
168) W	hen electron in hydrogen atom jumps from hig	ghe	er orbit into first orbit the set of lines emitted	А
is c	called			
А.	Lyman series	В.	Balmer series	
C.	paschen series	D.	Pfund series	
169) Ac	cording to Bohr's atomic model, the angular r	no	mentum of electron in an orbit is equal to an	В
int	egral multiple of			
A.	2h/π	Β.	h/2 π	
C.	2 π/h	D.	$mh/2 \pi$	
170) A	ccording to postulate of Bohr's theory			С
A.	$E_n-E_p=f\lambda$	В.	E _n -E _p =hc	
C.	E _n -E _p =hf	D.	E _p -E _n =hf/c	
171) If	an electron jumps from lower to higher orbit it w	/ill		А
A.	absorb energy	В.	emit energy	
C.	either of these	D.	none of these	

172) The radius of first Bohr's orbit for hydrogen a	ton	ı is	С
A. 0.053 m	Β.	0.053mm	
C. 0.053nm	D.	0.053µm	
173) 1 Aungstrom is equal to		· ·	В
A. 10 ⁻⁸ m	Β.	10 ⁻¹⁰ m	
C. 10 ⁻¹² m	D.	none of these	
174) First Ionization energy of hydrogen atom is			С
A. 13.6 eV	Β.	3.4 eV	
C13.6 eV	D.	none of these	
175) When an electron exists in its lowest state, it is	cal	led	D
A. normal state	Β.	ground state	
C. excited state	D.	both a and b	
176) X-rays were discovered by			С
A. Balmer	Β.	Einstein	
C. Roentgen	D.	Curie	
177) The velocity of x-rays is equal to that of			С
A. cathode rays	В.	alpha rays	
C. gemma rays or light rays	D.	none of these	
178) X-rays are			А
A. electromagnetic waves	Β.	transverse waves	
C. longitudinal waves	D.	mechanical waves	
179) x-rays are			В
A. high energy electrons	Β.	high energy photons	
C. radio waves	D.	un-known wave nature	
180) Photo cell is a device which converts			D
A. electrical energy into chemical energy	Β.	heat energy into electrical energy	
C. mechanical energy into electrical energy	D.	light energy into electrical energy	
181) Which of the following shell is closest to the nu	cleu	IS	А
A. K-shell	Β.	L-shell	
C. M-shell	D.	N-shell	
182) The transition of electrons between the various	sh	ells give rise to	А
A. characteristic x-rays spectrum	Β.	continuous x-rays spectrum	
C. both a and b	D.	none of these	
183) A x-ray photon produced due to transition of e	lect	ron from M shell to K shell is called	В
Α. Κα	Β.	K_{β}	
С. Кү	D.	none of these	
184) x-rays can cause			A
A. cancer	Β.	malaria	
C. both a and b	D.	none of these	

(PHYSICS- QUANTUM MECHANICS)

		Answer Key
185)	The state of two distinguishable particles (ignoring spin) can be written as	В

	A. A superposition state	Β.	Product state	
	C. Orthogonal states	D.	Normal states	
186)	The state of two indistinguishable particles can be written as			А
	A. A superposition state	Β.	Product state	
	C. Orthogonal states	D.	Normal states	
187)	The exchange operator is also calledoperator.			D
	A. symmetric	Β.	Antisymmetric	
	C. Null	D.	Permutation	
188)	188) The N particles of a system are said to be identical if the various observables of the system are when any two			
	particles are interchanged.			
	A. Symmetrical	Β.	Antisymmetical	
	C. Identical	D.	None	
189)	The spin of composite particle is half odd integer, this particle	e ob	ey	С
	A. Bose-Einstein statistics	Β.	Maxwell-Boltzmann statistics	
	C. Fermi-Dirac statistics	D.	Bose-Fermi statistics	
190)	The violation of Pauli-exclusion principle for identical fermion	ns l	eads to	С
	A. $\psi(r_1, r_2) = 1$	Β.	$\psi(r1, r2) = n$	
	C. $\psi(r_1, r_2) = 0$	D.	$\psi(r1, r2) = 2n$	
191)	The properties of ³ He are completely different from those of ⁴	He,	because ³ He is a and ⁴ He is a	В
, in the second s	A. Boson, antiparticle	Β.	Fermion, boson	
	C. Boson, fermion	D.	Isotope, boson	
192)	The spin triplet state is and singlet state is		· ·	А
,	A. symmetric, antisymmetric	Β.	antisymmetric, symmetric	
	C. Both are symmetric	D.	Both are antisymmetric	
193)	The antisymmetric wave functions for a system of non-intera	acti	ng identical particles as	С
,	A. A matrix	Β.	Secular equation	-
	C. Slater determinant	D.	Singular matrix	
194)	For even permutation under particle exchange	F.		D
- /	A. $(-1)^{P}=0$	Β.	$(-1)^{P} = P$	
	C. $(-1)^{P} = -1$	D.	$(-1)^{P}=1$	
195)	Potential of harmonic oscillator is given by V=			В
,	A. <i>mah</i>	Β.	1	
			$\frac{1}{2}kx^2$	
	$\frac{1}{C}$ n^2	b	L kr	
	$\frac{p}{r}$	Γ.	κλ	
	2 <i>m</i>			
196)	Energy eigenvalue of simple harmonic oscillator is given by F	1 =		С
		Ī	Nhy	-
	A. $h\nu$	В.	14117	
		מ	ħ.u	
	C. $\left(n+\frac{1}{2}\right)\hbar\omega$	ν	ΠW	
107)		ŀ		P
197)	The zero-point energy for simple harmonic oscillator is given	by	E =	В
	$ \mathbf{A} = \frac{1}{-h\nu}$	В.	1 — ħu	
	2		2	
	C. 3	D.	5 *	
	$\overline{2}^{\Pi \omega}$		$\frac{1}{2}$ mw	
198)	The energy levels of the linear harmonic oscillator are			А
	A. all nondegenerate	Β.	n-fold degenerate	
	C. $(n + 1/2)$ -fold degenerate	D.	(2n + 1)-fold degenerate	
199)	The Number operator N ² =a ^t a ^{is}	1		С
)	A. Unitary	B.	Projection	-
	C. Hermitian	D.	All of these	
200)	The operator a is called	۲.		В
	A. Number operator	B	Lowering operator	~
	C Raising operator	<u>D</u> .	Conjugate operator	
L	C. Ituising operator	۲.	conjugate operator	

201)	201) The Schrödinger picture is useful when describing phenomena withHamiltonians.			
	A. time-independent	Β.	time-dependent	
	C. Free particle	D.	Bound particle	
202)	In Heisenberg picture the time dependence of theis co	omp	letely frozen	В
	A. operators	Β.	Base kets	
	C. State kets	D.	Both b and d	
203)	Perturbation theory is valid for			D
	A. Time dependent states	Β.	Time-dependent Hamiltonian only	
	C. Non-degenerate levels only	D.	Stationary states	
204)	Perturbation theory can be used to approximate energies and s	state	es of a system with	В
	A. High deviations	Β.	Small deviations	
	C. Exactly solvable Hamiltonian	D.	Hamiltonian that cannot be reduced to exactly solvable	
205)	In time independent neutrurbetion theory		Hamiltonian	٨
203)	A Hemiltonian is frozen in time	Þ	Hemiltonian is evolving in time	A
	C. Hamiltonian is fine dependent and state is stationery.	D.	None	
206)	A diagonal matrix of some operator A can be represented as:	р.	None	C
200)	A diagonal matrix of some operator A can be represented as.	Þ	4	C
	$ A < n A_{nm} m >$	р.	A_{nm}	
	C a S	h	None of the above	
	$a_m o_{nm}$	ν.		
207)	Trace of a matrix can be written as:			D
_0.7	A. A	B.	$\mathbf{\nabla}$.	2
	11mm		$\sum A_{mm}$	
			m	
	$\sum \delta_{mn} A_{mn}$	D.	both b and c	
200)	The natural language of quantum machanics is			C
208)	The natural language of quantum mechanics is		Tongor analysis	С
208)	The natural language of quantum mechanics is A. classical mechanics	В.	Tensor analysis	С
208)	The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan	B. D.	Tensor analysis Riemann geometry	C
208)	The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan	B. D. iics?	Tensor analysis Riemann geometry	C C
208)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his 	B. D. iics? B.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions	C C
208)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some 	B. D. iics? B.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions.	C C
208)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes 	B. D. iics? B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None	C C
208) 209) 210)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has 	B. D. iics? B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None	C C B
208) 209) 210)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector. 	B. D. iics? B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None	C C B
208) 209) 210)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level 	B. D. B. D. D. B.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level	C C B
208) 209) 210) 211)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating 	B. D. B. D. B. D. the	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level 	C C B
208) 209) 210) 211)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating [A. Transmitted, scattered] 	B. D. iics? B. D. the B.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level wave function by wave function. Scattered, transmitted	C C B C
208) 209) 210) 211)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating A. Transmitted, scattered C. Scattered, plane 	B. D. ics? B. D. B. D. B. D. B. D. B. D. B. D. D. D. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level	C C B C
208) 209) 210) 211) 212)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating and the state of the	В. D. ics? В. D. D. В. D. the B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level	C C B C
208) 209) 210) 211) 212)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating in A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition 	В. D. В. D. В. D. В. D. В. В. В. В. В. В. В. В. В.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level wave function by wave function. Scattered, transmitted Plane, scattered Trichotomy	C C B C A
208) 209) 210) 211) 212)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality 	В. <u>D.</u> <u>ics</u> ? <u>B.</u> <u>D.</u> <u>D.</u> <u>B.</u> <u>D.</u> <u>B.</u> <u>D.</u> <u>B.</u> <u>D.</u> <u>D.</u>	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level wave function by wave function. Scattered, transmitted Plane, scattered Trichotomy None	C C B C A
208) 209) 210) 211) 212) 213)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality The time evolution operation is unitary. The result is consequent. 	B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level wave function by wave function. Scattered, transmitted Plane, scattered Trichotomy None	C C B C A D
208) 209) 210) 211) 212) 213)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality The time evolution operation is unitary. The result is consequ A. Conservation of probability current density 	B. D. B.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level wave function by wave function. Scattered, transmitted Plane, scattered Trichotomy None e of the Conservation of energy	C C B C A D
208) 209) 210) 211) 212) 213)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating in a scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality The time evolution operation is unitary. The result is consequitable of the scattered A. Conservation of probability current density C. Conservation of time 	B. D. ics? B. D. D. D. D. D. D. B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level	C C B C A D
208) 209) 210) 211) 212) 213) 214)	 The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating in A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality The time evolution operation is unitary. The result is consequed A. Conservation of probability current density C. Conservation of time An operator S is said to be unitary if 	B. D. ics? B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level	C C B C A D
208) 209) 210) 211) 212) 213) 214)	The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality The time evolution operation is unitary. The result is consequ A. Conservation of probability current density C. Conservation of time An operator S is said to be unitary if A. State Science Scie	В. D. D. B. D. B. D. B. D. B. D. B. D. B. B. D. B. B. B. B. B. B. B. B. B. B	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level wave function by wave function. Scattered, transmitted Plane, scattered Trichotomy None e of the Conservation of energy Conservation of probability	C C B C A D A
208) 209) 210) 211) 212) 213) 214)	The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality The time evolution operation is unitary. The result is consequ A. Conservation of probability current density C. Conservation of time An operator S is said to be unitary if A. $\hat{S}^{\dagger} = \hat{S}^{-1}$ C $\hat{A}^{\dagger} = \hat{x}$	B. D. D. B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level wave function by wave function. Scattered, transmitted Plane, scattered Trichotomy None e of the Conservation of energy Conservation of probability $\hat{S}^{\dagger} = \hat{S}$ None	C C B C A D A
208) 209) 210) 211) 212) 213) 214) 214)	The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality The time evolution operation is unitary. The result is consequ A. Conservation of probability current density C. Conservation of time An operator S is said to be unitary if A. $\hat{S}^{\dagger} = \hat{S}^{-1}$ C. $\hat{A}^{\dagger} = a$	B. D. ics? B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level wave function by wave function. Scattered, transmitted Plane, scattered Trichotomy None $\hat{S}^{\dagger} = \hat{S}$ None	C C B C A D A
208) 209) 210) 211) 212) 213) 214) 215)	The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality The time evolution operation is unitary. The result is consequ A. Conservation of probability current density C. Conservation of time An operator S is said to be unitary if A. $\hat{S}^{\dagger} = \hat{S}^{-1}$ C. $\hat{A}^{\dagger} = a$ The link between observables and operators is useful because	B. D. ics? B. D. Se	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level wave function by wave function. Scattered, transmitted Plane, scattered Trichotomy None e of the Conservation of energy Conservation of probability $\hat{S}^{\dagger} = \hat{S}$ None	C C B C A D A D
208) 209) 210) 211) 212) 213) 214) 215)	The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality The time evolution operation is unitary. The result is consequ A. Conservation of probability current density C. Conservation of time An operator S is said to be unitary if A. $\hat{S}^{\dagger} = \hat{S}^{-1}$ C. $\hat{A}^{\dagger} = a$ The link between observables and operators is useful becaus A. Observables can be replaced by operators	B. D. ics? B. D. se B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level	C C B C A D A D
208) 209) 210) 211) 212) 213) 214) 215)	The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality The time evolution operation is unitary. The result is consequ A. Conservation of probability current density C. Conservation of time An operator S is said to be unitary if A. $\hat{S}^{\dagger} = \hat{S}^{-1}$ C. $\hat{A}^{\dagger} = a$ The link between observables and operators is useful becaus A. Observables can be replaced by operators C. There is no link	B. D. jics? B. D. See B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level	C C B C A D A D
208) 209) 210) 211) 212) 213) 214) 215)	The natural language of quantum mechanics is A. classical mechanics C. Linear algebra Why are operators important in the study of quantum mechan A. Schrodinger used operators in the derivation of his equation. C. Applying an operator to a wave function reveals some information about the particle it describes. An f-fold degenerate energy state has A. f- energy levels corresponding to each state vector C. One state vectors corresponding to this energy level The first Born approximation consists then of approximating a A. Transmitted, scattered C. Scattered, plane Time evolution operator followproperty. A. Composition C. Schwarz inequality The time evolution operation is unitary. The result is consequ A. Conservation of probability current density C. Conservation of time An operator S is said to be unitary if A. $\hat{S}^{\dagger} = \hat{S}^{-1}$ C. $\hat{A}^{\dagger} = a$ The link between observables and operators is useful becaus A. Observables can be replaced by operators C. There is no link	B. D. jics? B. D. See B. D. See B. D.	Tensor analysis Riemann geometry Operators are used in solving the Schrodinger equation to find wave functions. None f-state vectors corresponding to this energy level (n+f)-state vectors corresponding to this energy level	C C B C A D A D

A. Row vector	B. Transpose of column vector	
C. Column vector	D. Rectangular matrix	
217) The vectors of dual Hilbert space can be represented by	which has a countably infinite number of components:	D
A. Row vector	B. Transpose of row vector	
C. Column vector	D. Both A and B	
218) Hermitian adjoint of a column vector isvector.		В
A. Row vector	B. Column vector	
C. Not possible	D. None	
219) The importance of the differences between $ \psi\rangle^*$ and $ \psi\rangle^T$	is that $ \psi\rangle^*$ is aand $ \psi\rangle^T$ is a	В
A. Bra, ket	B. Ket, bra	
C. Row, column	D. Both A and C	
220) The eigenvalues of a unitary matrix have absolute value equal	to	А
A. One	B. Infinity	
C. Zero	D. Is not possible to find	
221) When E>0, we obtain	• • •	С
A. Single state	B. Microstate	
C. Scattering state	D. Bound state	
222) Physically realizable states lying in Hilbert space correspond t	to	В
A. Continuous spectrum	B. Discrete spectrum	
C. Configuration space	D. None	
223) Quantum Numbers are obtained by solutions of		D
A. Heisenberg's Uncertainty Principle	B. Dirac equation	
C. Hydrogen atom	D. Schrodinger equation	
224) Maxwell-Boltzmann law is for the		А
A. Distinguishable particles	B. Indistinguishable particles	
C. Fermions	D. Bosons	
225) The wave function of fermions is		D
A. Continuous	B. Single Valued	2
C. symmetric	D. Both A and B	
226) Fermi-Dirac statistics cannot be applied to		С
A Electrons	B Fermions	Ũ
C Photons	D Protons	
227) The Schrodinger wave equation is	5. 1100005	D
A Must contain a scalar potential	B Non linear	Ľ
C real	D Is same as Newton's law of acceleration	
228) If w and Φ are two solutions of the Schrödinger equation then	is also its solution	D
$A \Psi + \Phi$	B $a\Psi + b\Phi$ where a b are scalar	2
$C \Psi / \Phi$	D Both A and B	
229) In continuous spectrum energy of particle isenergy	rov of system	А
A Greater than	B Less than	
C Equal to	D None	
230) Unbound states have		D
A Boundary conditions	B Discrete spectrum	D
C Zero energy	D. No boundary condition	
231) The wavefunction of a free particle is	p. No boundary condition	P
A Scattered wave	P. Plane weve	Б
C Standing wave	D. Longitudinal wave	
222) The Porr interpretation of the wave function refers to:	p. Longitudinal wave	C
232) The Born interpretation of the wave function refers to.	the amplitude represents the intensity	C
A. The wave function could be both real and imaginary	B. of the wave function	
C. the square of the amplitude gives the probability density	D. the wave function is the solution of the Schrodinger wave equation	
233) Any wave function having anti-symmetry property is said to b	be of parity	A
A. Odd	B. Even	
C. Zero	D. Infinite	
234) If there exist only one eigenvector corresponding to a given eigenvector	genvalue, then eigenvalue is said to be	В

A. Degenerate	В.	Non-degenerate	
C. Discrete	D.	Equal to one	
235) Operators representing observables have eigenva	lue		С
A. zero	Β.	imaginary	
C. real	D.	one	
236) The uncertainty in measurement of momentum means:			В
A. Position is delocalized	Β.	measurement on identically prepared system yields	
		different result	
C. measurement on identically prepared system yields same result	D.	None	
237) According to time-independent perturbation theory, the first of	orde	r correction to energy is	D
A. Expectation value over perturbed states	Β.	Expectation value over orthogonal states	
C. Expectation value over normal states	D.	Expectation value over unperturbed states	
238) If two states share same energy, then energy eigenvalue is said	d to	bedegenerate.	В
A. n-fold	Β.	Two-fold	
C. Infinite-fold	D.	None	
239) The exchange operatorHamiltonian operator.			A
A. Commutes with	Β.	Anti-commute with	
C. Adjoint to	D.	Hermitian to	
240) Two operator are said to commute when	_		C
A. Their commutator is one	Β.	Their wavefunctions are normalized	
C. Both have simultaneous eigenfunctions	D.	None	
241) If A & B are a canonically conjugate pair of observables, the	en [A,B]=	В
A. jħ/2	Β.	iħ	
C. 2ħ	D.	2iħ	
242) A stationary state can be represented as:			C
A. $\varphi(x,t) = \varphi(x)$	Β.	$\varphi(x,t) = \varphi(t)$	
C. $\varphi(x,t) = \varphi(x) \exp(-iEt/\hbar)$	D.	Both a and c	
243) Collection of square integrable wavefunctions is an example of	of		А
A. Hilbert space	Β.	Vector space	
C. Configuration space	D.	Phase space	
244) If the particle moving in a potential then the solution o	f th	e wave equation are describe as a stationary states	В
A. Time-dependent	Β.	Time independent	
C. velocity dependent	D.	velocity independent	

(PHYSICS: ELECTROSTATICS AND MAGNETOSTATICS)

		Answer
		Ку
245) The magnetostatic is highly relies on which pro	perty	С
A. Resistance	B. Capacitance	
C. Inductance	D. Momentum	
246) Using Maxwell equation which of the following	cannot be calculated directly	С
A. B	B. D	
C. A	D. H	
247) Which of the following relation will hold good?		D
A. D=uH	Β . Β =εΕ	
$C.E = \varepsilon D$	D. B=uH	
248) Find the magnetic field when the magnetic vector potential is a unit vector		
A. 1	B1	
C. 0	D. 2	

249) The permittivity is also called		В
A. Electrostatic energy	B. Dielectric constant	
C. Dipole moment	D. Susceptibility	
250)Dielectric constant will be high in		C
A. Conductor	B. Semiconductor	
C. Insulator	D. Superconductor	
251) Find the susceptibility of a material whose dielectric	c constant 2.26	A
A.1.26	B. 3.26	
C. 5.1	D. 1	
252) The susceptibility of free space is	1 1	В
A. 1	B. 0	_
C. 2	D. ∞	
253) Find the inductance of a material with 100 turns, are	ea 12 units and current of 2A in air	A
A.0.75 mH	B. 7.5 mH	_
C. 75 mH	D. 753mH	
254)Which of the following cannot be computed using t	he Biot savart law?	C
A. Magnetic Field intensity	B. Magnetic Flux density	
C. Electric Field intensity	D. Permeability	
255)Tesla is unit of		C
A. Field strength	B. Inductance	
C. Flux density	D. Flux	
256) A magnetic field exists around		D
A. Iron	B. Copper	
C. Aluminium	D. Moving charges	
257) The ratio of intensity of magnetization to the magnet	etization force is known as	В
A. Flux density	B. Susceptibility	
C. Relative permeability	D. None of the above	
258) The force between two long parallel conductor is in	versely proportional to	D
A. Radius of conductor	B. Current in one conductor	
C. Product of current in two conductors	D. Distance between the conductors	
259) The use of permanent magnets is not made in		C
A. Magnetos	B. Energy meters	
C. Transformers	D. Loud speakers	
260)Reciprocal of permeability is		А
A. Reluctivity	B. Susceptibility	
C. Permittivity	D. Conductance	
261)One tesla is equal to		С
A.1 wb/mm2	B. 1 wb/m	
C. 1 wb/m2	D. 1 wb/m2	
262) The unit of flux is the same as that of		D
A. Reluctance	B. Resistance	
C. Permeance	D. Pole strength	
263) The commonly used material for shielding or screen	ning magnetism is	С
A.Copper	B. Aluminium	1
C. Soft iron	D. brass	1
264)Hysteresis loop in case of magnetically hard materia	als is more in shape as compared to magnetically	С
soft materials.		

A. Circular	B. Triangular	
C. Rectangular	D. None of the above	
265) Which of the following cannot be computed using	the Biot Savart law?	
A. Magnetic field intensity	B. Magnetic flux density	С
C. Electric field intensity	D. Permeability	
266) For time varying currents, the field or waves	s will be	С
A.Electrostatic	B. Magneto static	
C. Electromagnetic	D. Electrical	
267) Find the displacement current when the flux density	v is given by t^3 at 2 seconds.	С
A. 3	B. 6	
C. 12	D. 27	
268) The Ampere law is based on which theorem?		С
A. Green's theorem	B. Gauss divergence theorem	
C. Stoke's theorem	D.Maxwell theorem	
269) The Faraday's law states about which type of EMF	2	A
A. Transformer EMF	B. Back EMF	
C. Generator EMF	D. Secondary EMF	
270) The H quantity is analogous to which component in	the following?	С
A.B	B.D	
C.E	D.V	
271) Find the magnetic field intensity due to a solenoid of	f length 12cm having 30 turns and current of 1.5A.	D
A.[250	B. 325	
C. 175	D. 375	
272) Identify which of the following is the unit of magn	etic flux density?	С
A. Weber	B. Weber/m	
C. Tesla	D. Weber ⁻¹	
273) The Laplacian of the magnetic vector potential will	be	A
A. – µ J	B. – µ I	
C. – u B	D. –µ H	
274) The magnetostatics highly relies on which property	?	С
A.Resistance	B. Capacitance	
C. Inductance	D. Moment	
275) In electric fields, $D = \varepsilon E$. The correct expression w	hich is analogous in magnetic fields will be	В
$A, H = \mu B$	$\mathbf{B} \cdot \mathbf{B} = \mathbf{\mu} \cdot \mathbf{H}$	_
$C_{\mu}A = \mu B$	$\mathbf{D} \cdot \mathbf{H} = \mathbf{\mu} \cdot \mathbf{A}$	
276) The most effective and quickest may of making a m	agnet from soft iron is by	A
A. Placing it inside a coil carrying current	B. Induction	
C. The use of permanent magnetic	D. Rubbing with another magnetic	
277) What will be the current passing through the ring sh	aped air cored coil when number of turns is 800 and	В
ampere turns are 3200?		2
A.2	B. 4	
C.6	D. 8	
278 Which of the following statements is correct?		D
A. The magnetic flux inside an exciting coil is	B. The magnetic flux inside an exciting coil is zero	-
lower than its outside surface		
C. The magnetic flux inside the exciting coil is	D. The magnetic flux inside the exciting coil is	

279)How does the magnetic compass needle behave in a	a magnetic field?	С
A. It assures a position right angle to magnetic field	B. It starts rotating	
C. It assures a position which follows a line of magnetic flux	D. None of the above	
280)Which of the following materials are diamagnetic?		С
A.Silver	B. Copper	
C. Silver and copper	D.Iron	
281)For which of the following materials the saturation	value is the highest?	D
A. Ferromagnetic materials	B. Paramagnetic materials	
C. Diamagnetic materials	D. Ferrites	
282) The attraction capacity of electromagnet will increa	use if the	D
A. core length increases	B. core area increases	
C. flux density decreases	D. flux density increases	
283)Core of an electromagnet should have		С
A. low coercivity	B. high susceptibility	
C. both of the above	D. none of the above	
284) Magnetism of a magnet can be destroyed by		D
A.heating	B. hammering	
C. by inductive action of another magnet	D. by all above methods	
285) A long straight wire carries a current I=10 A. At wl	hat distance the magnetic field H=1 Am ⁻¹ ?	С
A.1.39 m	B. 1.19 m	
C. 1.59 m	D. 1.79 m	
286) The law which states that the line integral of the ma	agnetic field around a close curve is equal to the free	С
current through a surface, is		
A. Tellegen's theorem	B. Gauss' law	
C. Ampere's law	D. Coulomb's law	
287) The lines of force due to charged particles are		В
A. Always straight	B. Always curved	
C. Sometimes curved	D. None of the above	
288) The dissipation factor of a good dielectric is of the	order of	А
A.0.0002	B. 0.002	
C. 0.02	D.0.2	
289)Which of the following expression is correct for ele	ectric field strength?	А
A.E=D/E	B. E=D2/t	
C.E=jtD	D.E=nD2	
290)The power dissipated in a pure capacitor is		А
A.Zero	B. Proportional to applied voltage	
C. Proportional to value of capacitor	D. Both (b) and (c) above	
291) Energy stored in the electric field of a capacitor wh	en charged from a D.C source of voltage is equal to	А
joules		
A.CV2	B. C2V	
C.V2C	D. CV	
292) A unit tube of flux is known as tube		В
A. Newton	B. Faraday	
C. Michale	D.None of above	
202 Migg approxitors are characterized by all of the falls	wing excent	С

A. Stable operation	B. Accurate value			
C. Low leakage reactance	D. Low losses			
294) The flux-density at a distance of 0.1 m from a long s	straight wire, carrying a current of 200 A is	В		
A. 5*10-4 Wb/m2	B. 4*10-4 Wb/m2			
C. 3*10-4 Wb/m2	D. 2*10-4 Wb/m2			
295) Which of the following materials is used for the ge	eneration of ultrasonic waves by using	В		
magnetostatic effect?				
A. Paramagnetic material	B. Ferromagnetic material			
C. Diamagnetic material	D. Both paramagnetic and diamagnetic material			
296)Magnetic flux will be if the surface area vector	or of a surface is perpendicular to the magnetic	А		
field.				
A.Zero	B. Unity			
C. Close to maximum	D. Maximum			
297)What is the SI unit for magnetic reluctance?		D		
A. Tesla	B. Henry			
C. Tesla ⁻¹	D. Henry ⁻¹			
298) In an electric magnetic circuit, for establishing a m	agnetic field.	С		
A The movement of coil is required	B Energy need not be spent, through energy is			
	required to maintain it			
Energy must be spent, through no energy is	D. Energy is not at all required			
required to maintain it		_		
299) Two magnetic poles are located 5 cm apart in air. If each pole has a strength of 5 mWb, find the force				
of repulsion between them	6250			
A. $\frac{1}{\pi^2}$ N	B. $\frac{6230}{\pi^2}$ N			
$C. \frac{625}{N}$ N	$D. \frac{62.5}{N}$			
$\frac{1\pi^2}{300}$ in a magnetic flux density, the total magnetic lines of	$\pi 2$	С		
of flux are at		C		
A. Acute angles	B. Obtuse angles			
C. Right angles	D. None of the above			
301 What does the constant 'u' indicate, while specifying	the relation between magnetic flux density (B) and	D		
magnetic field intensity (H)?				
A. Persistivity	B. Permittivity			
C. Permissibility	D. Permeability			
302) If a conductor with length of 5m is located along z-o	direction with a current of about 3A in az direction	В		
& $B = 0.04$ ax (T), then what would be the value of	force experienced by conductor?			
A. 0.6ax N	B. 0.6ay N			
C. 0.6az N	D. None of the above			
303) The main and important constituent of perm alloy is		D		
A. Tungsten	B. Chromium			
C. Cobalt	D. Nickel			
304)Basically, a degaussing is the process of		В		
A. Remagnetizing metallic parts	B. Demagnetizing metallic parts			
C. Removal of magnetic impurities	D. Removing gases from materials			
	· · · · · · · · · · · · · · · · · ·			

PHYSICS - ELECTROMAGNETICS

					Answe
					rKey
305)	Fa	araday's law for free charges is			С
, í	A.	$\nabla \times \mathbf{E} = -\frac{\partial B}{\partial B}$	B.	$\nabla \times \boldsymbol{E} = -\mu_0 \frac{\partial B}{\partial B}$	
		∂t		$\mu_0 \partial t$	
	C.	both a and b	D.	none of the above	
306)	A	mpere's law for free charges is	E.		А
,	A.	$\nabla \times \mathbf{B} = \mu_0 J_{tot}$	Β.	$\nabla B = \mu J_{tot}$	
	C.	both a and b	D.	none of the above	
307)	W	Then the magnetic field is perpendicular to the surface	e of	f the Earth, what is the polarization of the TEM wave?	А
	A.	Horizontal	B.	Vertical	
	C.	Circular	D.	Elleptical	
308)	W	hich of the following are electromagnetic?			D
		~	L.		
	A.	Gamma wave	Β.	Radio wave	
200)	C.	light	<u>p.</u>	all above	
309)	W	hich of the following types of electromagnetic energ	y h	as the shortest wavelength	A
	A.	Gamma wave	B.	Radio wave	
	C.	light	D.	all above	
310)	Fe	or Isotropic media speed of light obey	1		С
			L		
	A.	<u>n < 1</u>	В.	$n \leq 1$	
211)	C.	$n \ge 1$	p.	None of above	D
311)	2	units of electrical conductivity			D
	Δ	Siemens/m	R	Mho/m	
	1 1.		D.		
	C.	(Amps/Volt)/m	D.	All the above	
312)	T	ne SI units of DC resistance			С
		Ohma		Volts/Ampere	
	A.	Ollillis	Β.		
		Both (A) and (B)		None	
	C.		D.		
313)	T	ne average thermal speeds of "free" electrons in meta	ls v	when T=300k	C
		1.2.105	F		
	A.	1.2×10^{5} m/s	В.	1.1/x 10 ³ m/s	

C.	Both a and b	D.	None	
314) T	be electric field intensity at a point in space is equal i		agnituda to:	<u> </u>
514) 1	ne electric field intensity at a point in space is equal i	111 11	laginitude to.	C
A.	The potential difference there	Β.	The electric charge there	
C.	The force a charge of one coulomb would experience there	D.	The force an electron would experience there	
315) T	EM stands for			А
A.	Transverse Electromagnetic	В.	Transmitted Electromagnetic	
C.	True Electromagnetic	D.	none of the above	
316) W	Vave speed in terms of frequency f and wavelength λ	is e	xpressed as.	С
A.	f/λ	B.	λ/f	
C.	λf	D.	$(\lambda + f)$	
317) F	araday's law for insulator is			С
	$ \partial B$	B	— — — — — — — — — — — — — — — — — — —	
<u>л</u> .	$V \times E = -\frac{1}{\partial t}$	р.	$V \times E = -\mu \frac{\partial t}{\partial t}$	
C.	both a and b	<u>D.</u>	none of the above	٨
A.	esistance R and uniform magnetic field B produced in $(Bdv)^2/R$	nto p B.	page. If bar move with speed v the electrical power is Bdv/R	
C.	Both	D.	None	
319) A	metal bar of mass m moves on two parallel conduct	ing	rails separated by distance d and connected by	В
re	esistance R and uniform magnetic field B produced in	nto 1	page. If bar move with speed v the mechanical power	
is	5	100 1		
A.	Bdv/R	B.	$(Bdy)^2/R$	
		5.		
C.	Both	D.	None	
320) A	solenoid of radius a produce AC so that field is (R)	(t) =	$= B_0 \cos(\omega t) \hat{z}$ A circular loop of wire of radius $a/2$	D
	nd resistance R, place inside and coaxial with it. The	flux	x produce is	Ð

	A. $\left \frac{\pi a^2}{4} B \right $	В.	$\frac{\pi a^2}{4} B_0 \cos(\omega t)$	
	C. $\frac{\pi a^2}{4} B_0 \cos(2\pi f t)$	D.	All above	
321)	A solenoid of radius a, produce AC so that field is (B) and resistance R, place inside and coaxial with it. The	t) =	$= B_0 \cos(\omega t) \hat{z}$. A circular loop of wire of radius a/2 F produce is	С
	A. $\frac{\pi a^2 \omega}{4} B_0 \sin(\omega t)$	Β.	$\frac{\pi a^2}{4} \omega B_0 \sin(2\pi f t)$	
	C. Both above	D.	$\frac{\pi a^2}{4} B_0 \cos(\omega t)$	
322)	A solenoid of radius a, produce AC so that field is $(B($ and resistance R, place inside and coaxial with it. The	t) = curi	$= B_0 \cos(\omega t) \hat{z}$. A circular loop of wire of radius a/2 rent produce is	A
	A. $\frac{\pi a^2 \omega}{4R} B_0 \sin(\omega t)$	Β.	$\frac{\pi a^2}{4R} B_0 \sin(2\pi f t)$	
	C. Both above	D.	$\frac{\pi a^2 \omega}{4R} B_0 \cos(\omega t)$	
323)	The work done in carrying a charge q once around a ci	rcle	e of radius "r" with charge Q at the center is:	D
	A. $\frac{qQ}{4\pi\varepsilon_0 r}$	В.	$\frac{qQ}{4\pi\varepsilon_0} \frac{1}{\pi r}$	
	C. $\frac{qQ}{4\pi\varepsilon_0} \frac{1}{2\pi r}$	D.	zero	
324)	The SI unit of self-inductance and mutual inductance i	s		D
	A. ohm-m C. gilbert	B. D.	tesla henry	-
325)	Mathematical formulation for electromagnetic waves w	vas	provided by	A
	A. Maxwell	B. D	Hertz Einstein	-
326)	A particle carrying a charge of 2e falls through a poten	tial	difference of 3.0V. It acquired energy	А
	A. 9.6x10 ⁻¹⁹ J	B.	8.6x10 ⁻¹⁹ J	1

	C. 7.6x10 ⁻¹⁹ J	D.	6.6x10 ⁻¹⁹ J		
327)	Flux through any closed surface is $1/\epsilon$ times the total	cha	rged enclosed is	В	
	A. Ampere's law	Β.	Gauss's law		
	C. Coulomb's law	D.	None		
328)	How many electrons pass through an electric bulb in c	one	minute if the 300mA current is passing through it?	A	
	A. 1.125x10 ²⁰	Β.	2.125x10 ²⁰		
	C. 3.125×10^{20}	D.	None		
329)	V=RI is known as			D	
	A. Ampere's law	Β.	Gauss's law		
	C. Coulomb's law	D.	Ohm's law		
330)	Magnetic field that will cause a maximum force of 7.0 10.0 A)x1(¹⁻³ N on a 20.0 cm straight wire carrying a current of	A	
	A. 3.5x10 ⁻³ T	Β.	4.5x10 ⁻³ T		
	C. 3.5x10 ⁻² T	D.	None		
331)	331) The induced emf in a coil which is directly proportional to the rate of change of magnetic flux is known as				
	A. Ampere's law	Β.	Gauss's law		
	C. Coulomb's law	D.	Faraday's law		
332)	332) The emf produced in metal rod of length 25 cm is moving at 0.5 ms ⁻¹ in direction perpendicular to a 0.25 T magnetic field is				
	A. 3.13 x10 ⁻² V	Β.	2.13 x10 ⁻² V		
	C. 1.13 x10 ⁻² V	D.	None		
333)	Force per unit positive charge is known as:		1	A	
	A. Intensity	В.	Electric field		
	C. Magnetic field	D.	None of the above		
334)	Ampere's Circuital Law and which of the following la	w iı	n electrostatics are analogous	В	
	A. Lenz's	Β.	Gauss's		
	C. Biot–Savart's	D.	Faraday's		
335)	Ampere's Circuital Law can be applied the	ne c	onductor.	В	
	A. Inside	Β.	Outside		
	C. Both (a) and (b)	D.	None of these		
336)	Maxwell's equations are based on law(s).			D	
	A. Faraday's	Β.	Gauss's		
	C. Ampere's	D.	All of these		
337)	Maxwell's equations involve			В	
	A. Charge density	Β.	Current density		
	C. Magnetic intensity	D.	All of these		
	Magnetic flux density is a relation of			C	
	A. Current and area	В.	Area and its direction		
	C. Magnetic flux and area	D.	None of these		

(PHYSICS: HEAT AND THERMODYNAMICS)

	HEAT & THERMODYNAMICS				
229)	In an open system for maximum work, the process mus	at he entirely			
336)	A Reversible	B Isothermal	А		
	C. Adiabatic	D. Isobaric			
339)	The time required for a thermodynamic system to come	into thermal equilibrium is called	В		
	A Equilibrium time	B Relaxation time			
	C. End point	D. Conduction time			
340) The linear thermal coefficient of a solid is LESS than its volume thermal expansion coefficient by a factor of					
	A. 3/2	B. 3			
	C. 9	D. 6			
341)	If we decrease the volume of gas by keeping its temperative	ature constant then the internal energy of gas will	D		
		b. tu succes			
	A. Become zero	B. Increase D. Pomein unchanged			
342)	L. Decrease	p. Remain unchanged	D		
542)	In the case of monoatonne rucar gas, during adiabatic pr	rocess, which of the following is valid:	D		
	A. PV=NK _B T	B. PV=NRT			
	$C. p_1 v_1 = P_2 V_2$	D. $P/V^{-\gamma}$ =constant			
343)	343) Which of the following represents the energy storage?				
	A. Work	B. Heat			
	C. Internal energy	D. Both heat and work			
344)	For isotropic solids the linear thermal coefficient of exp	bansion depends on	D		
	A. Length of material	B. Diameter of material			
	C. Volume of material	D. None of these			
345)	The fish survive under frozen lakes because		D		
	A. Mass of water is highest at 0 degree Celsius	B. At sea level water boils at 100 degree Celsius			
	C. Volume of water is highest at 0 degree Celsius	D. Density of water is highest at 4 degree Celsius			
346)	The theorem of equipartition of energy can be applied o	only under the condition when	C		
	A. Gas is liquefying	B. Ice is melting			
	C. Gas is expanding	D. water is boiling			
347)	The heat capacity depends on whether the heat is added	to a system at constantor constant	А		
	A. Pressure, Volume	B. Volume, Temperature			
	C. Pressure, Temperature	D. Mass, Volume			
348)	If we consider nitrogen N ₂ as ideal gas, than what will b	be its heat capacity at constant volume?	А		
	A. 2.5 R	B. 3 R			
	C. 3/2 R	D. 7/2 R			
349)	Which of the following relations is correct for one mole	e of an ideal gas?	D		
	A. Cp=1+R/Cv	B. Cp /Cv			
	C. Cp+Cv=0	D. Cp=R+Cv			

350)	350) What is the equation for the entropy of a system S if its two parts 1 and 2 having entropies S_1 and S_2 , respectively, are considered in thermal equilibrium?				
	$A. S=S_1+S_2$	B. $S=S_1-S_2$			
	C. $S = (S_1 + S_2)/2$	D. $S=S_1S_2$			
351)	Which of the following statement is not true?		В		
	A. For an irreversible process, dS>0	B. Entropy is a conserved quantity			
352)	C. For a reversible process, $dS=0$	p . [For an isolated system, $ds \ge 0$	D		
552)	be	i ne sourum nietai is 75kg, ne specific ficat capacity would	D		
	A. 75 J Kg ⁻¹ ⁰ C ⁻¹	B. 112500 J kg ⁻¹ °C ⁻¹			
	C. $15 J kg^{-1} C^{-1}$	D. 20 J kg ⁻¹ ⁰ C ⁻¹			
353)	The amount of energy required to change the liquid into gas	and vice versa without any change in temperature is termed as	D		
	A. Heat capacity	B. Latent heat of fusion			
25.4	C. Specific heat capacity	D. Latent heat of vaporization			
354)	Thermal energy that is absorbed during the process of meltin	g is called	В		
	A. Specific latent heat	B. Latent heat of fusion			
	C. Latent heat capacity	D. None of the above			
355)	In the process of melting, thermal energy is		В		
	A. Not required	B. Taken in			
25.6	C. Given out	D. Neither taken in nor given out			
356)	During boiling process, the temperature of the substance will		D		
	A. Increase	B. Decrease			
257)	C. Depend on heat capacity of substance	D. Remain constant			
357)	If the boiling point of an object id high, then its rate of evapo		В		
	A. De last C. Depend on the density of object	D. Depend on the heiling temperature			
358)	If a two sided fair coin and a six faced dice are thrown simul	taneously then the probability of getting TAIL for the coin	А		
	and FIVE for the dice will be	b 1/0			
	A. 1/12 C. 7/12	B. 1/8			
250)			٨		
559)	Statistical methods provide greater accuracy when the humoo	er of observations are	A		
	A. Very high	B. Medium			
2(0)	C. Very small	D. None of these			
360)	In statistical physics the value of probability of occurrence of	f an event cannot be	A		
	A. Negative	B. Zero			
	C. 1	D. 1/2			
361)	If two events A and B are occurring independently then the p be equal to	brobability of occurrence of these two independent events will	В		
	A. A+B	B. A x B			
	C. A-B	D. A/B			
362)	In a two state system if we conduct extremely large number	of trails on a fair coin then which of the following is true?	А		
	A. There are low fluctuations in the measurement	B. Probability of getting heads is high			
2.52	C. I here are no fluctuations in the measurement	p. Probability of getting tails is high			
363)	For a system to have minimum entropy which of the following	ng statement is true	D		
1	A. Temperature of the system is below 0 K	B. System is not in thermal equilibrium			

	C. System has only one particle	D.	System has only one available energy state	
364)	Regarding the entropy of an object, which of the following s	tate	ement is true?	С
	A Television 1	b		
	A. It increases when an object releases heat	В.	It becomes zero at 0 °C	
365)	C. It drops down when an object releases heat Which of the following is a non-spontaneous process at roor	p_{\cdot}	It always increases mespective of losing of gaining heat	B
505)	which of the following is a non-spontaneous process at root	n u		D
	A. Evaporation of water	Β.	Burning of match stick	
	C. Melting of ice	D.	None of these	
366)	Efficiency of a Carnot heat engine whose source and sink ter	mpe	eratures are at 525 K is:	D
	A 100%	B	50%	
	C 25%	b.	0%	
367)	For good heat conductors usually the values of heat capacity	v are	a.	В
001)	Tor good near conductors assumy the values of near capacity	uiv		2
	A. High	Β.	Low	
	C. Infinite	D.	Zero	
368)	Joule is a unit of			D
	A Heat	B	Work	
	C Momentum	D.	Both (A) & (B)	
369)	On which of the following thermometer's scales, the interva	1 be	etween the lower and upper fixed points is divided into 180	С
<i></i>	equal part			
			1	
	A. Centigrade scale	Β.	Kelvin scale	
	C. Fahrenheit scale	D.	None of these	
370)	When the temperature of water is gradually increased from () de	egree Celsius to room temperature, then which of the	D
	following statement is correct about its volume			
	A. It increases gradually	В.	Its decreases gradually	
	C. First it increases and then decreases	D.	First it decreases and then increases	
371)	On which of the following factors the average kinetic energy	y of	gas molecules depends	В
	A. Pressure	Β.	Temperature	
	C. Volume	D.	Mass	
372)	Gaps are left in railway tracks to compensate their expansion	n dı	l Iring	С
	A. Floods	Β.	Rainy season	
	C. Hot season	D.	Snowfall	
373)	Which of the following materials will take less time to reach	ı at	thermal equilibrium when kept in direct contact with each	A
	other			
	A Conductors	B	Insulators	
	C. Semi-conductors	D.	All will take equal time	
374)	Which of the molecules of a gas can rotate about three axis?	P.		В
ĺ				
	A. Monatomic	Β.	Polyatomic	
	C. Diatomic	D.	All the low density gas molecules	
275)	When the volume of a gas is hold fixed then its processre wil	1.00	mucash zara at	D
575)	when the volume of a gas is held fixed, then its pressure wh	li ap	sproach zero at	D
	A. 100 °C	Β.	0 K	
	C. 4 °C	D.	-40 F	
376)	At a given temperature which of the gas molecules will have	e gr	eater average speeds:	A
	A Monostomia molecules	Þ	Distance malagulas	
	A. pyronoatomic molecules	p. h	CO ₂ molecules	
1	C. It organomic molecules	μ.		1

377)	At room temperature, how many maximum degrees of freede	om	an atom in a solid can possess	С		
	A 2	B	4			
	C. 6	D.	3			
378)	At room temperature, the root mean square speed of gas mol	ecu	eles is slightly greater than their	А		
	A Average speed	B	Maximum speed			
	C Collision speed	<u>р.</u> Б	Terminal speed			
370)	The linear thermal coefficient of a solid is less than its volum	<u>р</u> . 10 f	hermal expansion coefficient by a factor of	С		
519)				C		
	A. 1/2	Β.	3/2			
	C. 3	р.	5/2			
380)	The equipartition theorem of energy can be applied under wh	nicł	n of the following conditions	D		
	A. When ice is melting	Β.	When water is boiling			
	C. When gas is liquifying	D.	When gas is expanding			
381)	For isotropic solids the linear thermal coefficient of expansion	on c	depends on	D		
	A. Length of a material	B.	Diameter of a material			
	C. Volume of a material	D.	None of these			
382)	The Kelvin temperature is numerically equal to the	_ a	nd may be measured by means of a	В		
	A Heavy water temperature liquid thermometer	B	Ideal gas temperature, gas thermometer			
	C Ideal gas temperature, liquid thermometer	<u>b</u> .	None of these			
383)	Which of the following is chosen as the standard thermometer	<u>p.</u> ric	substance?	D		
565)	383) Which of the following is chosen as the standard thermometric substance?					
	A. Conducting solid	Β.	Non-conducting solid			
	C. Liquid	D.	Gas			
384)	384) The water has maximum density at 4 C because at this temperature					
	A. Its mass becomes maximum	Β.	Its volume becomes maximum			
	C. Both (A) & (B)	D.	None of these			
385)	While reducing the volume of a container by keeping is temp the container walls increases because the molecules	pera	ature constant, the pressure exerted by the gas molecules on	С		
	A. Move with high velocities	Β.	Strike the walls with greater force			
	C Strike the walls more frequently	D.	Remain in contact with the walls for a shorter time			
386)	When a cycle tyre suddenly bursts, the air inside the tyre expa	nds	s. This process is	В		
	A. isothermal	Β.	adiabatic			
	C. isobaric	D.	isochoric			
205		L.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
387)	The efficiency of a heat engine working between the freezing	poi	nt and boiling point of water is	С		
	A. 6.25%	В.	0%			
	C 26.8%	h	100%			
388)	Which of the following temperature scales doesn't have neg	<u>P</u> . ativ	re numbers?	R		
500)	A Celsius	R	Kelvin	D		
	C Fabrenbeit	b.	All of these			
380)	Which of two temperature change are equivalent?	ρ.		С		
509)	$\Delta 1 \text{ K} - 1 \text{ F}$	B	1 F - 1 C	C		
	C = 1 K - 1 C	p. h	None of these			
300)	$\mathbf{C}_{\mathbf{I}} = \mathbf{I} \mathbf{C}_{\mathbf{I}}$	<u>רי</u>	he absolute temperature of the gas is doubled. What	٨		
590)	happens to the pressure of the gas?	• 1	ne absolute temperature of the gas is doubled. What	Л		
	A Doubles	B	Triples			
	C. Decreased to one-half	D.	None of these			
	· · · · · · · · · · · · · · · · · · ·	4				

391) A sample of ideal gas has an internal energy U and is then compressed to one-half of its original volume while the			
temperature stays the same. What is the new internal energy of the ideal gas in terms of U?			
A. U	B. 1/2U		
C. 2U	D. 4U		
392) The process of heat transfer from ob	ject to another because of molecular motion and interaction is called:	В	
A. Convection	B. Conduction		
C. Radiation	D. Induction		
393) When we touch a piece of metal and	a piece of wood that are placed in the same room, the piece of metal feels much	D	
colder than the piece of wood. This	happens because of the difference in:		
A. Specific heat	B. Temperature		
C. Density	D. Thermal conductivity		
394) The process of heat transfer by the r	novement of mass from one place to another is called:	А	
A. Convection	B. Conduction		
C. Radiation	D. None of these		
395) Which mechanism of heat transfer is	s involved in heat flow from Sun to Earth?	С	
A. Conduction	B. Convection		
C. Radiation	D. Induction		
396) If the absolute temperature of a radi	ating object is doubled, by what factor does the rate of energy emission change?	D	
A. 2	B. 4		
C. 8	D. 16		
397) Which of the following is a character	ristic of an adiabatic process?	С	
A. $\Delta U = 0$	B. $W = 0$		
C. $\overline{\mathbf{Q}} = 0$	D. $\Delta V = 0$		

(PHYSICS: NUCLEAR PHYSICS)

					Answer Key
200)	т		1	1	D
398)	³⁹⁶ In neutral atom, the electrons are bound to the nucleus by.				D
	A.	Magnetic force	Β.	Electrostatic force	
	C.	Friction force	D.	Centripetal force	
399)	Ν	finimum energy required to pull nucleus apart is	cal	led	D
	A.	Ionization energy	Β.	electron affinity	
	C.	chemical energy	D.	binding energy	
400)	P	henomenon in which radiations split matter into	ion	s is called	В
	A.	Denaturing	В.	Ionization	
	C.	Condensation	D.	Atomization	
401) During second half-life original material is decayed					С
	A.	one quarter	В.	two quarter	
	C.	three quarter	D.	none	
402)	L	ifetime of unstable nuclei is.			В
	А.	Limited	Β.	unlimited	
	С.	100 years	D.	50 years	
403)	R	adiation that does not change its direction inside	ma	ignetic field is.	С
	A.	Alpha	В.	beta	
	C.	gamma	D.	x-ray	
404)	A	n electron traveling at 0.980c has a total energy	of	· · · · ·	D
	A.	0.511 MeV	В.	0.756 MeV	1
	C.	1.736 MeV	D.	2.55 MeV	

405)	405) Particles that participate in the strong nuclear interaction are called.			
A	A. Neutrinos	B.	hadrons	
C	C. leptons	D.	electrons	
406)	The fact that the binding energy per nucleon is rou	igh	ly a constant over most of the range of stable	А
	nuclei is a consequence of the fact that the nuclear	fo	rce is.	
A	A. Short range	В.	long range	
0	C. weak	D.	strong	
407)	A certain radioactive element has a half-life of 20	d. '	The time it will take for 7/8 of the atoms	C
	originally present to disintegrate is		r	
A	A. 20 d	В.	40 d	-
0	2. 60 d	D.	80 d	
408)	In scintillation, the energy of alpha particles is tran	nsfe	erred into	A
A	A. Energy of fluorescent	В.	Energy of ZnS	-
C	E. Energy of scintillation	D.	Light	
409)	In electrostatic generator, which are moved downy	var	d by the conveyor belt?	D
A	A. Atoms	В.	Ions	-
0	C. Negative Ions	D.	none	
410)	In proton synchrotron the magnet is excited period	lica	lly up to:	В
A	A. 10,000	В.	15,000	-
0	20,000	D.	25,000	
411)	In electron synchrotron the time of one revolution	of	electron in the circular orbit is equal to:	C
A	A. Amplitude	В.	Frequency	-
0	C. Period	D.	angular frequency	
412)	Magnetic field modulation is used in:			D
A	A. Cyclotron	В.	Synchrocyclotron	
0	C. Betatron	D.	Synchrotron	
413)	In proton synchrotron a magnet produces a field n	orn	nal to the	A
A	A. Chamber	В.	Electric field	
0	C. Proton	D.	Quadrants	
414)	Which one is involved when proton is converted in	nto	neutron?	C
A	A. –Ve meson	В.	+ Ve meson	
0	$\mathbb{E} \left[-\operatorname{Ve} \pi^{\circ} \operatorname{meson} \right]$	D.	+Ve π^{o} meson	
415)	In mass spectrograph, ions remain undeflected if:	1		В
A	A. qB=mv	В.	BV=E	
0	$L \mid qV=B$	D.	Bq=E	
416)	When the daughter element has a very short half-l	ife	and parent element has a very long half-life then	C
A	$\lambda \lambda 1 - \lambda 2 = 0$	В.	$\lambda 1 > \lambda 2$	
0	$\Sigma \mid \lambda 2 > \lambda 1$	D.	all	
417)	Rutherford considered nucleus at the center of ato	m a	as a:	A
A	A. Positive charge	В.	Negative charge	
0	C. Concentrated energy	D.	None	
418)	In radioactive equilibrium, number of atoms of ea	ch I	member element is directly proportional to its:	A
A	A. Average life	В.	Half-life	
0	C. rate of formation	D.	rate of disintegration	
419)	Constituent components of an atom having mass n	10.	'A' and atomic no. 'Z' is.	C
A	A. Z (H1+Nmn)	В.	Zn (H1+Nmn)	
	$\mathbb{E} \mid \mathbb{Z}m (H1+Nmn)$	D.	Zm (H1+Nm)	

⁴²⁰ Which one of the following radiations is extremely penetrating					
A. Alpha	Β.	beta			
C. gamma	D.	x-ray			
421) A travelling wave LINAC can accelerate electro	⁴²¹) A travelling wave LINAC can accelerate electrons up to				
A. 1000 KeV	В.	1000 MeV			
C. 1000 GeV	D.	1000 TeV			
422) To impart high energy in F.M. cyclotron the ort	oit of	the ions needs to be:			
A. Magnetized	В.	expanded			
C. energized	D.	stabilized			
423) A 100 g sample of a radioactive element has a h	nalf-lit	fe of 5 days. How many grams of radioactive	C		
material will remain after 15 days?					
A. 100 g	В.	50 g			
C. 25 g	D.	12.5 g			
⁴²⁴) The correct expression relating the energy E of	a part	icle to its rest mass m ₀ , its momentum p, and the	D		
speed of light c, is					
A. $E^2 = p^2 c^2 + m_0 c^2$	В.	$E^2 = p^2 c^2 + (m_0 c)^2$			
C. $E_2 = p^2 c + (m_0 c^2)^2$	D.	$E^2 = p^2 c^2 + (m_0 c^2)^2$			
425) In liquid drop model, the symmetry effect is known	own to	o be inversely proportional to:	D		
A. $A + 2Z$	В.	A-2Z			
C. atomic number	D.	mass number			
⁴²⁶ Product of Half-life and decay constant is			В		
A. 69.3	В.	0.693			
C. 0.639	D.	63.9			
427) Which of the following rays are emitted during	radio	activity?	D		
A. Alpha-rays	В.	Beta-rays			
C. Gamma-rays	D.	All the above			
⁴²⁸⁾ The difference in the mass of the resultant nucle	eus an	d the sum of the masses of two parent nuclear	А		
particle is known as					
A. Mass defect	В.	solid defect			
C. weight defect	D.	nucleus defect			
429) The half-life of radioactive nuclei is.			А		
Α. 0.693 / λ	В.	0.793 / λ			
C. 0.693λ	D.	0.793λ			
⁴³⁰ Energy given to nucleus to dismantle it increase	es the		C		
A. Kinetic energy of individual nucleons	В.	mechanical energy of individual nucleons			
C. Potential energy of individual nucleons	D.	chemical energy of individual nucleons			
⁴³¹ In scintillation, the energy of alpha particles is t	In scintillation, the energy of alpha particles is transferred into:				
A. Energy of fluorescent	В.	Energy of ZnS			
C. Energy of scintillation	D.	Light			
432) Nucleus is			А		
A. Positively charged	В.	negatively charged			
C. neutral	D.	charge keeps on changing.			
433) Important feature of Pion is that it has:					
A. Finite energy	В.	Infinite energy			
C. Finite range	D.	Infinite range			
434) Particles which can be added to the nucleus of an atom without changing its chemical properties are.					
A. Electrons	В.	Protons	1		

	C. Neutrons	D.	Alpha particles		
435)	⁴³⁵ If M is the mass of a nucleus and A is its mass number, then (M-A)/M is called its				
	A. Binding energy	Β.	Fermi energy		
	C. Mass defect	D.	Packing fraction		
436)	The average binding energy of a nucleon inside ar	1 at	omic nucleus is about.	В	
	A. 8 eV	В.	8 MeV		
	С. 8 Ј	D.	8 ergs		
437)	Alpha, beta, and gamma radiations come out of a	rad	ioactive substance.	А	
	A. Spontaneously	В.	When it is put in a reactor.		
	C. When it is heated.	D.	Under pressure		
438)	If the half-life of a radioactive sample is 10 hours,	, its	mean life	А	
	A. 14.4 hours	В.	7.2 hours		
	C. 24 hours	D.	6.93 hours		
439)	When two deuterium nuclei fuse together to form	a tı	ritium nucleus, we get a	D	
	A. neutron	В.	deuteron		
	C. alpha particle	D.	proton		
440)	One-sixteenth of the initial amount of a radioactiv	e is	sotope remains undecayed after two hours. The	С	
	half-life of the isotope is.				
	A. 15 min	В.	45 min		
	C. 30 min	D.	60 min		
441)	Cathode rays are.			А	
	A. stream of electrons	В.	stream of positively charged particles.		
	C. streams of uncharged particles	D.	Electromagnetic waves		
442)	442) Positive rays are.				
	A. electromagnetic waves	В.	Ions		
	C. electrons	D.	neutrons		
443)	The number of electrons in an atom of atomic num	nbe	r Z and mass number A is	А	
	A. Z	Β.	Α		
	C. A-Z	D.	(A-Z)/2		
444)	In stable nuclei, the number of neutrons (N) is rela	atec	to the number of protons (Z) as	D	
	A. N < Z	В.	N = Z		
	C. $N > Z$	D.	$N \ge Z$		
445)	Which of the three basic forces can provide an attr	ract	tion between two neutrons?	В	
	A. Electrostatic and nuclear	В.	Gravitational and nuclear		
	C. Electrostatic and gravitational	D.	Only Nuclear		
446)	The probability of a radioactive atom to survive 5	tin	nes longer than its half-life period is	С	
	A. 2/5	Β.	2×5		
	C. 2 ⁻⁵	D.	2 ⁵		
447)	Decay rate of a radioactive sample is directly prop	ort	ional to	С	
	A. Temperature of sample	В.	Final Amount of sample		
	C. Initial Amount of sample	D.	All of these		
448)	Lifetime of unstable nuclei is	•		В	
	A. Limited	В.	Unlimited		
	C. 100 years	D.	50 years		
449)	449) The charge on beta particle is				
	A. +e	В.	-e	1	
	C. +2e	D.	None	1	
		1	1		

450) After two halve lives the number of decayed nuclei of an element are				
A. N	В.	N/2		
C. N/4	D.	3N/4		
⁴⁵¹ The amount of energy equivalent to 1 amu is			С	
A. 9.315 MeV	В.	9.315 MeV		
C. 931.5 MeV	D.	9315 MeV		
⁴⁵²) The rate of decay of radioactive substance			С	
A. Remains constant with time	В.	Increase with time		
C. Decrease with time	D.	May increases or decrease with time		
453) Radiations emitted by a radioactive element	are		С	
A. Visible	В.	Visible by pyrex glass		
C. Invisible	D.	None		
454) The element formed due to radioactive decay is called				
A. Parent element	В.	Daughter element		
C. Mother element	D.	Son element		
455) A sample contain N radioactive nuclei. After 4 half-lives number of nuclei decayed is				
A. N/16	В.	15N/16		
C. N/8	D.	7N/8		
⁴⁵⁶) The energy required to break a nucleus of an atom is called				
A. Atomic energy	В.	Nuclear energy		
C. Binding energy	D.	Breaking energy		
(457) Which one the following is not the nuclear radiations				
A. Alpha Particle	В.	Beta Particle		
C. Gamma rays	D.	X-Rays		

(PHYSICS: ELECTRONICS)

					Answer Key
458) Crystal of Germanium or Silicon in its pure form at absolute zero acts as					
	A.	A conductor	В.	a semiconductor	С
	C.	an insulator	D.	both (a) and (c)	
459)	C	omputer chips are made from			
	_	×	h		
	A.	Iron	В.	silicon	В
	C.	Helium	D.	strontium	
460)	W	henever a covalent bond breaks it creat	es		
	А.	an electron	В.	a hole	С
	C	an electron hole pair	D	a positron	
	C.	an electron note pan	D.	a position	
461)	461) The impurity in the Germanium is usually in the ratio of				

	A.	1:10 ⁴	B.	$1:10^{8}$	В		
	C.	1:10 ¹²	D.	1:10 ¹⁶			
462)	462) Depletion region contains:						
	A.	Protons	B.	positive ions	D		
	C.	negative ions	D.	both B and C			
463)	А	P-type crystal is					
	A.	neutral as a whole	B.	impurity added crystal	А		
	C.	pure crystal	D.	positively charged			
464)	Ν	Aajority charge carriers in the P-region of p-n junction	n ar	e			
	A.	Electrons	B.	positrons	С		
	C.	Holes	D.	neutrons			
465)	С. The	e maximum number of electrons which the M-shell of	f an	atom contains is			
/	A.	32	Β.	8	С		
	C.	18	D.	50			
466)	A tı	ransistor has					
,	A.	One pn junction	B.	Two pn junction	В		
	C.	Three pn junction	D.	Four pn junction			
467)	The	e number of depletion layers in a transistor is					
,	A Four B Three				D		
	C.	One	D.	Two			
468)	468) The base of a transistor is doped						
	A.	Heavily	B.	Moderately			
	C.	Lightly	D.	None of the above			
469)	469) The element that has the biggest size in a transistor is						
	A.	Collector	B.	Base			
	С.	Emitter	D.	Collector base junction			
470)	OIn a PNP transistor the current carriers are						
	A.	acceptor ions	B.	Donor ions	D		
	С.	Free electrons	D.	Holes			
471)	1) The collector of a transistor is Doped						
., .,	A.	Heavily	B.	Moderately	В		
	C.	Lightly	D.	None of the above	-		
472)	472)A transistor is a operated device						
A Current B Voltage					А		
	C.	Both voltage and current	D. D	None of the above			
473)	473) In a NPN transistor						
., 5)	A	Free electrons	B	Holes	В		
	с. С	Donor ions	<u>D</u>	Acceptor ions	-		
474)	474) The emitter of a transistor is doned						
A Lightly R Heavily					B		
	$\frac{\Lambda}{C}$	Moderately	р. D	None of the above	U I		
175)	In a transistor, the base current is about of emitter current						
1 +13)	ша		μu		1		

A. 25%	B. 20%	D		
C. 35%	D. 5%			
476) At the base-emitter junctions of a transistor, one finds				
A. a reverse bias	B. a wide depletion layer	С		
C. low resistance	D. None of the above			
477) The input impedance of a transistor is				
A. High	B. Low	В		
C. very high	D. almost zero			
478) A JFET has three terminals, namely				
A. cathode, anode, grid	B. Emitter, base, collector	С		
C. Source, gate, drain	D. None of the above			
479) A JFET is similar in operation to Valve				
A. diode	B. Pentode	В		
C. triode	D. Tetrode			
480) A JFET is also called transistor				
A. Unipolar	B. Bipolar	A		
C. Unijunction	D. None of the above			
481) A JFET is a driven device				
A. Current	B. Voltage	В		
C. Both current and voltage	D. None of the above			
482) The gate of a JFET is biased				
A. Reverse	B. Forward	A		
C. Reverse as well as forward	D None of the above			
483) In a p-channel IFET the charge carriers are				
A Electrons R Holes				
C Both electrons and holes	D. None of the above			
(194) A MOSEET has torminals				
	B Five	р		
C Four	D Three			
485) A IFET has nower gain	D. Thice			
465)A JFET lias power gall				
A. Siliali	D. None of the shows	D		
496) The input control norometer of a IEET is	D. None of the above			
480) The input control parameter of a JFET is				
A. Gale voltage	B. Source voltage	A		
C. Drain voltage	D. Gale current			
487) The channel of a JFE1 is between the		D		
A. Gate and drain	B. Drain and source	В		
C. Gate and source	D. Input and out put			
488) A Monostable 555 timer has the following number	er of states:			
A. 0	B. 1	В		
C. 2	D. 3			
489) An Astable 555 timer has the following number of stable states:				
A. 0	B. 1			
C. 2	D. 3			
490) The output of the Astable circuit				
A. Constantly switches between two states	B. Is low until a trigger is received			
C. Is high until a trigger is received	D. Floats until triggered			
491). With most Monostable Multivibrators, what is the	e O output when trigger has occurred?			
A.low	B. +5V	A		
C. Set	D. High			
--	--	--------------------------------------		
492) What is another name for a Bistable Multivibrator?				
A. On-off switch	B. Oscillator	C		
C. Flip -flop	D. None			
493) What is the difference between an Astable Multivibrate	or and a Monostable Multivibrator?			
		Α		
A. The Astable is free running	B. The Astable needs to be clocked			
C. The Monostable is free running	D. None			
494) What is the meant of inputs are 1 in logic gates?				
A Switches are CLOSE	B Switches are OPEN	A		
C False statement	D None of the above			
495) According to Boolean algebra OR gate performs:				
(777) Theorem is to Doorem angeora, on gute performs.		С		
A. Decimal addition	B. Binary addition	<u> </u>		
C. Logical addition	D. Hexadecimal addition			
496) AND gate gives an output only:				
A. When all inputs are 1	B. When all inputs are 0	A		
C. When either all are 1 or all 0	D. None of the above			
497) In logic gates, three variables can only have a value:				
		С		
A. 0	B. 1			
C. Either 0 or 1	D. None of the above			
498) According to Boolean algebra, AND gate performs	1 1			
A. Logical addition	B. Logical subtraction	D		
C. Arithmetic multiplication	D. Logical multiplication			
499) A logic gate is an electronic circuit which:		5		
499) A logic gate is an electronic circuit which:	B Allows electron flow only in one direction	D		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1 value 	D		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic logic state 1 corresponds to: 	B. Allows electron flow only in one directionD. Alternate between 0 and 1value	D		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A +ve voltage 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level 	D		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level 	D C		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level 	D C		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level B. Zero voltage level 	D C D		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level B. Zero voltage level D. Lower voltage level 	D C D		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level 	D C D		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level B. Zero voltage level D. Lower voltage level 	D C D C		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level B. Zero voltage level D. Lower voltage level D. Lower voltage level B. Low 	D C D C		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Same 	D C D C		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 503) When an input electrical signal A= 10100 is applied to 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level a NOT gate, its output signal is 	D C D C		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 503) When an input electrical signal A= 10100 is applied to A. 01011 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Same a NOT gate, its output signal is B. 10101 	D C D C A		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 503) When an input electrical signal A= 10100 is applied to A. 01011 C. 10100 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1 value B. Zero voltage level D. Lower voltage level B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Same a NOT gate, its output signal is B. 10101 D. 00101 	D C D C A		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 503) When an input electrical signal A= 10100 is applied to A. 01011 C. 10100 504) The only function of a NOT gate is to	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Same a NOT gate, its output signal is B. 10101 D. 00101 	D C D C A		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 503) When an input electrical signal A= 10100 is applied to A. 01011 C. 10100 504) The only function of a NOT gate is to	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Same a NOT gate, its output signal is B. 10101 D. 00101 	D C D C A C		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 503) When an input electrical signal A= 10100 is applied to A. 01011 C. 10100 504) The only function of a NOT gate is to	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Same a NOT gate, its output signal is B. 10101 D. 00101 	D C D C A C		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 503) When an input electrical signal A= 10100 is applied to A. 01011 C. 10100 504) The only function of a NOT gate is to A. Stop a signal C. Invert an input signal 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Same a NOT gate, its output signal is B. 10101 D. 00101 B. Recomplement a signal D. Act as a universal gate 	D C D C A C		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 503) When an input electrical signal A= 10100 is applied to A. 01011 C. 10100 504) The only function of a NOT gate is to A. Stop a signal C. Invert an input signal 505) A NOR gate is ON only when all its inputs are 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Same a NOT gate, its output signal is B. 10101 D. 00101 B. Recomplement a signal D. Act as a universal gate	D C D C A C		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 503) When an input electrical signal A= 10100 is applied to A. 01011 C. 10100 504) The only function of a NOT gate is to A. Stop a signal C. Invert an input signal 505) A NOR gate is ON only when all its inputs are A. ON 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1 value B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Same a NOT gate, its output signal is B. 10101 D. 00101 B. Recomplement a signal D. Act as a universal gate 	D C D C A C D		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 503) When an input electrical signal A= 10100 is applied to A. 01011 C. 10100 504) The only function of a NOT gate is to A. Stop a signal C. Invert an input signal 505) A NOR gate is ON only when all its inputs are A. ON C. High	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level D. Same a NOT gate, its output signal is B. 10101 D. 00101 B. Recomplement a signal D. Act as a universal gate B. +ve D. OFF 	D C D C A C D		
 499) A logic gate is an electronic circuit which: A. Makes logic decision C. Works on binary algebra 500) In positive logic, logic state 1 corresponds to: A. +ve voltage C. Higher voltage level 501) In positive logic, logic state 0 corresponds to: Ave voltage C. More -ve voltage level 502) An XOR gate produces an output only when its two in A. High C. Different 503) When an input electrical signal A= 10100 is applied to A. 01011 C. 10100 504) The only function of a NOT gate is to A. Stop a signal C. Invert an input signal 505) A NOR gate is ON only when all its inputs are A. ON C. High C. High 	 B. Allows electron flow only in one direction D. Alternate between 0 and 1value B. Zero voltage level D. Lower voltage level B. Zero voltage level D. Lower voltage level D. Lower voltage level D. Lower voltage level D. Same a NOT gate, its output signal is B. 10101 D. 00101 B. Recomplement a signal D. Act as a universal gate B. +ve D. OFF I and when A= 0, B= 1, then again C= 1. It must be 	D C D C A C D D		

A. XOR	B. AND				
C. NAND	D. NOR				
507) A logic gate has inputs A, B and C. The output from the logic gate will be available when —— inputs are					
presents:		D			
A. A and C	B. B and C				
C. A and B	D. A, B and C				
508) What is the meant of inputs are 0 in logic gates?		В			
A. Switches are CLOSE	B. Switches are OPEN	D			
C. High voltage	D. None of the above				
509) The monostable Multivibrator has the possible out put	TS .				
A. Two	B. Three	C			
C. One	D. Four				
510) A circuit that operates in such a way that its output is	high when all its inputs are high				
A. NAND	B. NOR	C			
C. AND	D. OR				
511) The output of an OR gate with three inputs, A, B and C	is LOW when				
A. A=0,B=0,C=0	B. A=0,B=0,C=1	Α			
C. A=0,B=1,C=1	D. All of the above				
512) Any Boolean function can be represented in a					
A. Plane	B. Graph	D			
C. Flow chart	D. Truth table				
513) According to Boolean algebra, OR gate performs:		C			
A. Decimal addition	B. Binary addition	C			
C. Logical addition	D. Hexadecimal addition				
514) . With OR operation $1+1=$ —		C			
A 10	b 2	C			
C 1	\mathbf{p} , \mathbf{z}				
515) What is another name for a Bistable Multivibrator?					
A On-Off switch	B Oscillator	C			
C Flip-flop	D None	. C			
516) Which one is not arithmetic operation?					
A M. 14:1		C			
	D. Subtract	•			
517) The expression V= AsD is read as	p. publicaci				
A = A = A = B is read as	D V aquala A OD D	٨			
A. A Equals A AND B	D. None of the choice	A			
U. A equais A NOT B	p. mone of the above				

(PHYSICS: SOLID STATE PHYSICS)

			Answer Key
518)	A	unit cell that contains lattice points only at the corners is known as	
	A.	Primitive unit cell B. Secondary unit cell	А
	C.	Layered unit cell D. Derived unit cell	
519)	If	(326) are the miller indices of a plane, the intercepts made by the plane on the three crystallographic axes are	A

	A.	(2a,3b, c)	B.	(a, b, c)	
	C.	(a, 2b, 3c)	D.	None of these	
520)	In simp	le cubic lattice, the ratio d100: d110:d111 is			
	A.	$6:\sqrt{3}:2$	B.	$6:3:\sqrt{2}$	С
	C.	$\sqrt{6}$: $\sqrt{3}$: $\sqrt{2}$	D.	$\sqrt{6}$: $\sqrt{3}$: 1	-
	Iron has	s a Body-Centered Cubic (BCC) structure w	vith atomic rad	dius 0.123 Å. Find the lattice constant.	
521)	A.		B.	4.587 Å	D
,	C.	2.314 Å	D.	0.2840 Å	
522)	The inte	rplanar spacing of (220) planes of a Face-ce	ntered cubic (FCC) structure are 1.7458 Å. Calculate the lattice	
	constant	t		<u>^</u>	Δ
	A.	4.983 Å	B.	2.458 Å	
	C.	0	D.	5.125 Å	
523)	What is	the possible number of different types of la	ttices (3D)?		_
	A.	4	В.	8	C
	C.	14	D.	17	
524)	Non-pri	mitive unit cells is/are:			
	A.	SC	B.	FCC	D
	C.	BCC	D.	Both B and C	
525)	In Scho	ttky imperfection:			
	A.	Volume of the crystal increases	B.	Volume of the crystal decreases	D
	C.	Density of the crystal decreases	D.	Both A and C	
526)	Accordi	ing to Einstein model, if a crystal solid consi	sts of N atoms	s, then independent oscillators are?	
	А.	1N	B.	2N	C
	C.	3N	D.	6N	
527)	Atoms v	vibrate with different frequencies in solid, a	ccording to?		
	A.	Debye Model	В.	Einstein Model	А
	C.	Dulong Pettit's Law	D.	Universal solid law	
528)	At lowe	r temperature, phonon heat capacity $\mathbf{C}_{\mathbf{V}}$ var	ries as (accord	ling to Debye model)?	
	A.	$T^{3/2}$	B.	T^2	С
	C.	T ³	D.	Т	
529)	Transfe	r of heat take place in solids due to			
	A.	Electron	B.	Proton	D
	C.	Phonon	D.	Both A and C	-
530)	Amorpl	nous substances are isotropic because they h	avein all d	lirection	
		Same value of physical property	р	Different values of physical properties	-
	A.	Definite geometrical shape	<u></u>	Constant interfacial angle	A
501	C.		D.	Constant interfactar angle	
531)	The axi	ai relationship in a monoclinic crystal system	m 18		В

	A.	a≠b=c	B.	$a \neq b \neq c$	
	C.	$a=b\neq c$	D.	a=b=c	
532)	In the e	quation nλ=2dsinθ which is known as Bragg	's equation is.		
	A.	Density	B.	Diameter	С
	C.	Distance between planes	D.	Dielectric constant of particular crystal	
533)	Miller i	ndices are the Of the values of intercepts	(unit intercep	t)	
	А.	Square	B.	Reciprocal	В
	C.	Cubic	D.	Square root	
534)	At the z	one boundaries		•	
	A.	Phase velocity is zero	B.	Group velocity is zero	В
	C.	Both are zero	D.	None of these	
535)	For Aco	oustical branch, at K=0			
	А.	The two atoms are in phase	B.	The two atoms are out of phase	A
	C.	Both A and B	D.	Possess any direction	
536)	In-direc	et transition cannot occur without the involve	ement of		
	A.	Electron	B.	Proton	C
	C.	Phonon	D.	Photon	
537)	For squ	are lattice of periodicity (a), area of Brillouin	zone is		
	A.	4 (pi.pi / a.a)	B.	4 pi /a.a	А
	C.	Pi/ 4 a.a	D.	None of these	
538)	For mo	novalent metal, radius of fermi circle is			
	А.	0.592 pi /a	B.	0.732 pi /a	С
	C.	0.798 pi /a	D.	0.797 pi /a	_
539)	Which o	condition is true for divalent metal?			
	A.	Pi /a > k(F) >1.414 pi /a	B.	Pi /a < k(F) >1.414 pi /a	С
	C.	Pi /a < k(F) <1.414 pi /a	D.	Pi /a > k(F) <1.414 pi /a	
540)	For triv	alent metal, area of fermi circle is			
	A.	0.59 pi /a	В.	1.38 pi /a	В
	C.	1.98 pi /a	D.	0.79 pi /a	
541)	The con	dition $0 < k(F) < 1.414$ pi /a is true	1		
	A.	Simple cube	B.	Body centered cube	В
	C.	Face centered cube	D.	All of these	
542)	The pot	ential inside the metallic crystals accordir	ng to Kronig-l	Penny Model.	С
					-

	A.	Constant	B.	Zero	
	C.	Array of square wells	D.	Periodic	
543)	Wh	hat is the atomic packing factor of BCC structure?			
	A.	0.54	B.	0.68	В
544)	C.	0.45	D.	0.86	
544)	W	hich of the following point defects is non-stoichiometri	ic in	nature?	
	A.	Schottky defect	B.	Metal excess defect	В
	C.	Interstitial defect	D.	Impurity defect	
545)	Th fol	e Miller indices h, k, and l of parallel planes in a l lowing X-ray diffraction reflection rules?	BCO	C lattice should satisfy which of the	
	A.	h + k + l should be even	B.	h k and I should all be either even or odd	— A
	C	h k and I should form Duthagoras triplat	D	all planes allow reflections	
546)	U.	ii, k, and i should form Fyinagoras inplet	<u>р</u> .		
540)	In	which of the following Bravais lattices, not all axial an	Igles	are right angles?	
	A.	Tetragonal	В.	Rhombohedral	В
	C.	Orthorhombic	D.	Cubic	
547)	At	absolute zero, the boundary that separates the filled a	and	empty states in k-space is called?	
	A.	Partition surface	B.	Fermi surface	В
	C.	Zone boundary	D.	Harrison's surface	
548)	In	free electron model E-k curve is?			
510)					
	A.	Parabolic	B.	Non parabolic	Α
	C.	Both a and b	D.	None of these	
549)	Dif	ffraction is not possible to occur if the wavelength of X	K-ra	ys is	
	A.	Less than 2d	В.	Equal to d	D
	C.	Equal to 2d	D.	Greater than 2d	
550)	Fo	r one dimension crystal, the average kinetic energy in	the	ground state is	
	A.	1/2E _F	B.	1/3E _F	В
	C.	$3/5E_{\rm F}$	D.	$2/3E_{\rm F}$	
551)	Th	e effective mass of an electron in a semiconductor can	be		
	A.	Negative near the bottom of the end	B.	A scalar quantity with a small magnitude	А
	C.	Zero at the center of the band	D.	Negative near the top of the band	
552)	W	hich type of defect are point defects?			
	A.	One dimensional defect	B.	Zero dimensional defect	В
	C	Two dimensional defect	D	Three dimensional defect	
553)	U. In	intrinsic germanium at room temperature the numbe	rs o	r intee dimensional defect	
555)		Flectrons are more than holes	D	Flectrons and holes are equal	Ъ
	A. C	Heles are more than electrons	D.	There are no holes and electron	D
554)	C.	bits that move from zone to zone without closing area	D.	There are no noies and electron	
554)		Flactron orbits	D	Hale orbits	- C
	A. C	Open orbits	D.	None of these	C
555)	<u>с.</u> Тћ	e atomic radius of sodium is 1 86 angstrom. What is f	ם. erm	i energy of sodium at absolute zero	
555)			R	3 11eV	R
	л. С	2.11 C V 4 OeV	ם. ח	_2 11eV	
556)	U. If f	the ratio of hand gan to the temperature is large then	υ.	2.110 1	
550)		The concentration of intrinsic carriers will be low	B	The conductivity will be low	— D
L	п.	The concentration of multiple carriers will be 10w	μ.		

	0	The concentration of intrinsic comises will be high	h	Doth A & D	1
557)	C.	The concentration of intrinsic carriers will be high	<u>р</u> .		
557)	Ke	econstructing Fermi surface on the basis of the empty-la		ce model is known as:	
	A.	Ewald construction	В.	Harrison construction	В
	C.	Extrinsic concentration	D.	Intrinsic concentration	
558)	Fo	or a given semiconductor then product of electron &hol	e co	oncentration of a given temperature	
	A.	varies	Β.	remains constant	В
	C.	changes with temperature	D.	both b & c	
559)	In	intrinsic semiconductor, which relation is correct			
	A.	E(c) - E(f) = E(g) / 2	В.	E(c) + E(f) = E(g) / 2	А
	C.	E(c) / E(f) = E(g) / 2	D.	$E(c) \times E(f) = E(g) / 2$	
560)	In	phase space the electrons occupying in the ground state	es r	epresents by	
	A.	Points inside k-space	B.	Points outside k-space	А
	C.	Points near boundary of k-space	D.	All of these	
561)	Do	oped atom, when added to an intrinsic semiconductor,			
		Introduce quantum stated that are close to the edges of	п	Introduce quantum states that are near the center of the	
	A.	the forbidden band	в.	forbidden band	A
	C.	Increase the energy of electrons in the valence band	D.	Increase the energy of electrons in the conduction band	
562)	Fr	renkel defect belongs to which of the following classes	5?		
, í	Α.	Point defect	B.	Linear dislocation	-
			2.	Linear dislocation	A
	C.	Interfacial defect	D.	Bulk defect	
562)	Tm	aguilibrium state of a DN junction diada			
505)		Earmi anargy lavel of P , region is higher than that of		Formi operate level of N region is lower than that of P	-
	А.	N region	в	region	
		N-Tegion	D .	region	D
	C.	Fermi energy levels of both the regions are a minimum		Fermi energy levels of both the regions attend thermal	-
		value	D.	equilibrium	
				1	
564)	La	attice points have another name which is called			
	A.	Lattice site	В.	Lattice arrangement	А
	C.	Lattice circle	D.	Lattice array	
565)	Fe	ermi energy level for P-type extrinsic semiconductor lies	s		
	—		гт		_
	А.	At the middle of the band gap	В.	Close to the conduction band	В
		Close to the valence band	_		_
	C.		D.	None of these	
566)	Fe	ermi surface always intersect with zone boundaries			
	Α.	Perpendicularly	В.	Parallel	P
			2.	D (1 A 0 C	D
	C.	At the slope of zone boundaries	D.	Both A&C	
567)	In	ohmic contact, which is positively charged			
001)	A.	Metal	D	Semiconductor	-
			В.		А
	C.	Partially metal and partially semiconductor	D	None of these	
5(0)			υ.		
568)	W	hich relation is true for p-type semiconductor?	<u> </u>	$\mathbf{N}(x) / \mathbf{D}(x) = x(1) + x(2)$	-
	A.	N(p) + P(n) = n(1) / p(1)	В.	$N(p) / P(p) = n(1) \times p(1)$	D
	~	$N(n) P(n) = n(i) \times n(i)$	~	N. 0.1	D
	С.		D.	None of these	
569)	Th	e intrinsic carrier concentration for germanium at 300	Ki	s	
	A	3.4 E19 meter cube	в	1.4 E19 meter cube	
1	· · ·	1			I ('
		2.4 E10 m () . 1		2 0 E10	- C

570)	The r	random motion of holes and free electrons due to	o thermal ag	gitation is called		
				-		
	A.	Diffusion	В.	Pressure	A	
	C.	Ionization	D.	None of these		
571)	The d	lefect when an ion occupies an interstitial position	on in the cry	vstal lattice is called:		
	A.	Schottky defect	В.	Crystal defect	С	
	C.	Frenkel defect	D.	None of these		
572)	If m _p	$= m_n$, then the fermi level is exactly in the :				
	A.	Top of the forbidden fap	В.	Middle of the forbidden gap	В	
	C.	Bottom of conduction bond	D.	Middle of valence band		
573)	Wha	t is the atomic radius of a BCC crystal structu	ire?			
					В	
	A.	a/2	В.	√3a/2		
	C.	a/\2	D.	None of these		
574)	If wo	ork function of metal is less than work function o	of n- type se	miconductor then contact between them is		
	A.	Rectifying contact	В.	Ohmic contact	А	
	C.	Lattice contact	D.	Rectify contact		
575)	When	n a pentavalent impurity is added to a pure semi	conductor,	it becomes		
	A.	An insulator	В.	An intrinsic semiconductor	D	
	C.	p-type semiconductor	D.	n-type semiconductor		
576)	76) The axial relationship of a rhombohedral crystal system is given as					
	A.	a = b = c	В.	a = b ≠ c	А	
	C.	a ≠ b = c	D.	a≠b≠c		
577)	Whie	ch of the following compound shows both Sch	ottky and F	renkel defect?		
	A.	Silver(I) iodide	В.	Silver(I) bromide	В	
	C.	Magnesium sulphide	D.	Titanium oxide		

(PHYSICS WAVES AND OSCILLATIONS)

Waves and Oscillations (Dr. Shazia Shukrullah)				Answer Key
578)	If frequency of wave is 0.002 Hz then Its time period is			В
	A. 100 s	Β.	500 s	
	C. 5000 s	D.	50 s	
579)	An object with a mass M is suspended from an elastic spring	wit	h a spring constant k. The object oscillates with period T. If	
	he mass of oscillations is quadrupled, how it will change the	per	iod of oscillations.	D
	A. The period is decreased by factor four	Β.	The period is decreased by factor two	
	C. The period is increased by factor four	D.	The period is increased by factor two	
580)	Forced vibration are known as			С
	A. Simple harmonic vibration	Β.	Natural vibration	
	C. Driven harmonic vibration	D.	Free vibration	
581)	The distance travelled by the disturbance in one time period i	S		В
	A. Wave distance	Β.	Wave velocity	
	C. Wave work	D.	Wave number	

582) The distance covered by a body in one complete vibration is 20cm. What is the amplitude of body			
A. 5 cm	Β.	7.5 cm	
C. 10 cm	D.	15 cm	
583) Light waves in vacuum are perfectly			D
A. Plane	В.	Scattering	
C. Dispersive	D.	Nondispersive	
584) Center of the physical pendulum is			D
A. <u>L</u>	В.	I	
Md		Mad	
C. I	D.	<u> </u>	
$2\pi M d$		Md	
585) A sound source of frequency 600 Hz is moving towards an	bear	wer with valocity 20 m/s. The speed of sound is 340 m/s	С
The frequency herd by observer will be	JUSCI	ver with verocity 20 m/s. The speed of sound is 540 m/s.	C
A B0 Hz	B	63 5 Hz	-
C 637 5 Hz	<u>D</u>	630.5 Hz	
586) The main principle used in Interference is	р.	55015 112	В
A. Heisenberg's Uncertainty Principle	B.	Superposition Principle	
C. Duantum Mechanics	D.	Fermi Principle	-
587) The displacement of the spectrum to shorter wavelengths in	the 1	ight coming from distant objects moving toward the	В
pbserver			
A. Red shift	Β.	Blue shift	
C. Orange shift	D.	No shift	
588) Young's Double Slit Experiment was conducted in		·	А
A. 1801	В.	1885	
C. 1920	D.	1930	
589) What kind of sources are required for Young's Double Slit e	xper	iment	С
A. Intense	Β.	Bright	
C. coherent	D.	Incoherent	
590) Doppler effect in sound is		· · · · · · · · · · · · · · · · · · ·	А
A. Echocardiography	В.	Ultrasound machine	-
C. Stethoscope	D.	MRI machine	
591) Two coherent sources produce a dark fringe when phase diff	ieren	ce between the interfering waves is n integer	В
A. 2π	<u>B.</u>	$(2n-1)\pi$	
C. n	<u> </u>	Zero	
592) Calculate the angular deviation of the third order bright fring	ges 11	n radians when light of wavelength illuminates two parallel	В
slits 7.7 µm apart	Ь	0.215	
A. 215	<u>В.</u>	0.215	
503) The position of Zero order bright frings in double slit experi	p_{\cdot}		P
A Maximum	B	Zero	Б
			-
C. $\frac{\pi}{r}$	D.	<u>-</u> p	
594) What is the wavelength of the light, if mirror in interferomet	er is	moved through 0.233 mm and 792 fringes counted with	A
light meter	Ь		
A. 5.88×10^{-7} m	в.	$5.88 \times 10^{7} \text{ m}$	
C		None of these	
\sim 9.88 × 10 ⁻⁷ m	Υ	None of these	
595) The power transferred per unit area is equal to			B
A Interferometer	В	Intensity of light	
C. Power of light	D.	Area	-
596) Which of the following is an electromagnetic wave	P·	<u> </u>	С
A. h ravs	B.	β rays	1
C. Y rays	D.	X rays	1

597) T	The displacement of S.H.M when starts from the mean	position i	s X =	А
A	A. $X_m \sin(\omega t + \varphi)$	В.	$X_m \sin(\omega t - \varphi)$	
C	C. $X_m \cos(\omega t + \varphi)$	D.	$X_m \cos(\omega t - \varphi)$	
598) T	The region of the electromagnetic spectrum that allows	waveleng	ths to pass largely un attenuated through the earth	D
at	tmosphere is called			
A	A. Simple light	В.	Violet region	
0	C. Narrow band	D.	Optical window	
599) 🕅	Which of the following does not show any interference	pattern	a	A
A	A. Excessively thin film	В.	Soap bubble	
(C. A thick film	D.	Wedge Shaped film	
600) M	Which of the following is a unique property of laser	b		C
F	A. Directional	В.	Speed	
	C. Coherence	D.	Wavelength	
601) Z	Lero order fringe can be identified using	b	X7 11 1' 1.	A
F	A. White light	В.	Y ellow light	
	C. Monochromatic light	<u>p.</u>	Achromatic light	
602) P	hase difference between two coherent sources should	be		A
<u>A</u>	A. Zero	В.	2π	
(C. π	<u>р.</u>	$\pi/2$	
603) w	what will be the wave velocity if string tension is 3.6 N	and its li	near density is 25 g/m	B
A	A. 10 m/s	В.	12 m/s	
C	C. 16 m/s	D.	20 m/s	
604) <u>Г</u>	The average amount of power transmitted in a medium	per unit o	f its cross-sectional area is called	D
A	A. Interference	В.	Diffraction	
0	C. Wave speed	D.	Wave intensity	
605) W	With the propagation of a longitudinal wave through a lirection are	material n	nedium, the quantities transmitted in the propagation	В
4	A Energy momentum and mass	B	Energy	
	C Energy and mass	D.	Energy and linear momentum	
606) W	Which of the following statements is true	р.	Energy and mear momentum	C
	A Both light and sound waves can travel in the vacu	ım B	Both light and sound waves in air are transverse	
í c	C The sound waves in air are longitudinal while the l	light D	Both light and sound waves in air are longitudinal	
	waves are transverse	ingin D.	both light and sound waves in an are longitudinal	
607)	A particle on the trough of a wave at any instant will c	ome to the	e mean position after a time	B
	$\Delta T/2$	B	T/4	
	Γ T	<u> </u>	2T	
608)	If a particle is oscillating on the same horizontal plan	e in the or	ound	C
000)	A It has only kinetic energy but no potential energy	e in the gr	It has only potential energy but no kinetic energy	C
	C It has both kinetic and potential energies	<u> </u>	It has neither kinetic nor potential energies	
609) W	When two wayes of same amplitude add constructively	the inter	sity becomes	D
	A Double		Half	
	C One Fourth	<u>р</u> . D	Four Times	
610) P	C. Olic-Fourth	р.	1'our Times	
	A Tersional constant	P	Torsional line	
F	C Deference point	D.	Peteronee line	
<u>(</u>	C. Reference point	p. a hadw'a	Reference fine	D
	A Intensity	g bouy s	Amplituda	D
F	C Ditch	D.	Onelity	
		ρ.	Quality	
612)	I ne numan ear responds to intensities in range		15WL-24-10WL-2	A
I A	A. 10^{12} Wm ⁻² to 1 Wm ⁻²	В.	10 ³ W -1 (10 ⁶ W -1	
	$U_{1} = 10^{\circ} \text{Wm}^{-2}$ to 2Wm^{-2}	<u> </u>	$10^{-5} \text{Wm}^{-1} \text{ to } 10^{-6} \text{Wm}^{-1}$	
613)	what is the frequency of the wave of wavelength 3.27c	m travel v	vith speed of 243 m/s	
A	A. 1023 Hz	В.	134 Hz	
	C. 7431 Hz	D.	431 Hz	

614) The line or surface on which the disturbance has the sar	me phase at all points is called	А
A. Wave front	B. Wave speed	
C. Doppler effect	D. Newtons Ring	
615) Calculate the distance between adjacent bright fringes of	of the green light of wavelength 560 nm and viewing screen is	В
separated 1.2m from a double-slit source, the distance b	between the two slits is 0.030mm	
A. 1.2 cm	B. 2.2 cm	
C. zero	D. 2.4 cm	
616) Differentiate the following equation with respe	act to time	А
Direcentrate the following equation with respe		
$V = -\omega x_m$	$\sin(\omega t + \varphi)$	
A. $-\omega^2 x$	B. $\omega^2 x$	
C. $\omega x_m \cos(\omega t + \varphi)$	D. $\omega^2 x \cos(\omega t + \varphi)$	
617) The magnitude of applied torque is directly proportiona	al to	D
A. Velocity	B. Displacement	
C. Acceleration	D. Angle	
618) The device used in the Michaelson Morley experiment	was	С
A. Telescope	B. Plain Grating	
C. Interferometer	D. Prism	
619) What is the name of the force that causes oscillatory mo	otion	С
A. Damping force	B. Driving force	_
C. Restoring force	D. Oscillating force	
620) Periodic motion is motion in which		D
A. An object moves in a circle	B. An object moves with constant velocity	_
C. An object moves with constant acceleration	D. An object returns to its initial position at some later time	
621) When the movable mirror of a Michaelson Interferomet	ter is shifted through 0.0589 mm. 200 fringes cross the field. What is	А
the wavelength of the light		
A 5890 Å	B 5245 Å	
C 4965 Å	D 6894 Å	
622) Which of the following is not periodic motion	5. 00711	B
A A mass oscillating on a spring	B Projectile motion	, D
C A swinging pendulum	D A planet orbiting the sun	
623) Which differential equation describes the motion of a m	nass on a spring	Δ
$\Delta = d^2$	B B	
$\frac{d^2 x}{dt^2} + \frac{x}{m}x = 0$	$\frac{d^2x}{dt^2} + \frac{m}{k}x = 0$	
$\frac{d^2 x}{dt^2} + x = 0$	$\frac{d^2 x}{dt^2} + \frac{k}{m} x^2 = 0$	
624) When travelling wave is a sin or cos function of $(x+Vt)$) is called	А
A. Plane progressive wave	B. Nonharmonic wave	
C. Wave function	D. Wave force	
625) In vibratory motion		D
A. P.E. remains constant	B. K.E. remains constant	_
C. Total energy remains constant	D. Total momentum remains constant	
626) The space occupied by a compression or space occupied	d by a rarefaction is equal to	В
$\frac{1}{ A } = \frac{1}{ A } = \frac{1}$	B	2
	λ	
C. 2λ	D. $\frac{\lambda}{2}$	
627) An object of mass 1.53 kg is attached to the bottom of	f a vertical spring makes 72 complete oscillations in 180s. Find its	D
torce constant		
A. 6.6 m/s^2	B. 8.6 m/s^2	
C. $ 9 \text{ m/s}^2$	D. $ 9.6m/s^2 $	

628) In damped harmonic oscillation which one decreases			С	
A. Amplitude of vibration	Β.	Energy of vibration		
C. Both amplitude and energy	D.	Neither amplitude nor energy		
629) The contact point between plano convex lens and plane glass	plat	e behaves as	В	
A. Plane medium	Β.	Denser medium		
C. Curved medium	D.	Glow medium		
(630) Calculate the amplitude for a SHM using the equation $x = 3 \sin \theta$	n2p	t + 4cos3pt	В	
A. 3	Β.	5		
C. 4	D.	7		
631) What is the constant of proportionality of an oscillator if the da	amp	ing force is directly propotional to the velocity	А	
A. kg.s ⁻¹	Β.	kg.m.s ⁻¹		
C. kg.s	D.	kg.m.s ⁻²		
632) What is the phase difference between the prongs of the tuning	for	k	D	
Α. 5π	Β.	3π		
С. 2π	D.	π		
633) Which of the following does not exhibit polarization			А	
A. Longitudinal wave in a gas	Β.	Transverse wave in a gas		
C. Neither A nor B	D.	Both A nor B		
634) The phase difference between the acceleration of a particle ex	ecu	ting simple harmonic motion and the instantaneous	С	
velocity is				
Α. π	Β.	0.707π		
C. Zero	D.	0.5π		
635) In a simple harmonic oscillation, the acceleration against disp	lace	ement for one complete oscillation will be	D	
A. an ellipse	Β.	a circle		
C. a parabola	D.	a straight line		
636) A hollow sphere is filled with water. It is hung by a long threa	ıd. /	As the water flows out of a hole at the bottom, the period of	А	
pscillation will				
A. first increase and then decrease	Β.	first decrease and then increase		
C. increase continuously	D.	decrease continuously		
637) X-ray waves, television waves and radio waves are the examp	les	of	D	
A. Mechanical waves	Β.	Transverse waves		
C. Longitudinal waves	D.	Electromagnetic waves		

(PHYSICS: MATERIALS SCIENCES)

					Answer
					Кеу
638)	Tł	nose materials which have plenty of free electrons for e	elec	trical conduction are called:	
	Α.	Dielectrics	Β.	Conductors	В
	C.	Insulators	D.	Conductor	
639)	Le	ad is:			
	Α.	Ductile	В.	A semiconductor	А
	C.	Brittle	D.	polymer	
640)	С	urie temperature for iron is:			
	Α.	750° C	В.	500° C	А
	C.	570° C	D.	1500° C	
641)	W	hich one of the following is not a trivalent?			
	Α.	Sb	Β.	Al	А
	C.	Ga	D.	В	
642)	А	domain may contain atoms:			
	A.	107	В.	10 ¹⁷	D

	C.	10 ⁶	D.	10 ¹³	
643)	Th	ne material used for the core of a transformer.	Γ.		
0.07	Δ	Soft Magnetic Materials	B	Hard Magnetic Materials	А
	, ч. С	Dia-magnetic Materials	h.	Stool	
611)	C.	bich of the following material has only hulk modulus?	р.		
044)	~	Concroto	Ь	Morcupy	П
	А. С	Water	р. Б	Reth R & C	
	С. ті	valei	р.	Both B & C	
645)	11		Ь		
	А. С		в.	Heat dissipated	U
	C.	Work done against domain	р.	All of these	
646)		onductors have conductivities of the order of:	L	7	
	Α.	10 ³ (Ωm) ⁻¹	В.	10' (Ωm) ⁻¹	В
	C.	10 ⁻⁷ (Ωm) ⁻¹	D.	$10^{-6} (\Omega m)^{-1}$	
647)	Ar	rea under the stress-strain curve is:			
	Α.	Work done	Β.	Energy	D
	C.	Energy per unit area	D.	Energy density	
648)	A m	metallic wire is stretched by suspending weight to it. If odulus then energy density will be:	Е	is the longitudinal strain and Y is its Young's	
	A.	Υε ²	В.	$\frac{1}{-Y\varepsilon}$	
				2	D
	C.	1_{y^2}	D.	1 stars water in	
		$\begin{bmatrix} -Y & \varepsilon \\ 2 \end{bmatrix}$		2 - stress × strain	
649)	649) The slope of stress–strain curve of a typical ductile material is equal to:				
0.07	Δ	Energy stored	k	Energy density	D
	c	Stress per unit area	b.	Young's modulus	-
650)	C. Th	e hond that exists in a semiconductor is:	<u>p</u> .		
0507	Δ	Ionic hond	k	Covalent bond	B
	с. С	Metallic hond	<u> </u>	Hydrogen bond	
651)	C. In	insulators:	р.		
051)	^	the valence hand is partially filled with electrons	Ь	the conduction hand is partially filled with electrons	П
	А. С	the conduction hand is filled and the valence hand is	p. h	the conduction band is partially filled with electrons	
	C.	ame conduction band is filled and the valence band is	Ρ.	fully filled	
652)	ть	empty			
052)	 ^	Strain	Ь	Modulus of alacticity	D
	А. С	Torque	р. Б		Б
(52)	ر. ۱	houe queie temporature iron is:	р.	Force	
053)			<u>ь</u>	Diamagnatia	
	А. С		в.	Diamagnetic	A
CT (1)	C.	Ferromagnetic	р.	Nom-magnetic	
654)	Ve	ery weak magnetic signals are detected by:	L		_
	Α.	Magnetic resonance imaging	В.	X-ray machine	C
	C.	Squid	D.	Oscilloscope	
655)	In	a hysteresis loop, a ferromagnetic specimen attains its	sat	uration state of magnetism at:	
	Α.	Instantaneous value of A.C.	В.	Peak values of A.C.	В
	C.	First quarter of A.C. cycle only	D.	R. M. S. value of A.C.	
656)	The	e magnetic fields produced by electron in an atom is du	ie t	0:	ļ
	Α.	Spin motion	В.	Orbital motion	C
	C.	Both A & B	D.	Wave motion	
657)	А	material with high retentivity and large coercivity is use	eful	to make:	
	Α.	Electromagnet	В.	Permanent magnet	В

	C. Choke		D.	Core of transformer	
658)	Two wires o	of copper have lengths in the ratio 1 : 2 and ra	dii	in the ratio 2 : 1, their Young's modulus are in the	
	ratio:				
	A. 1:1		В.	1:8	А
	C. 4:1		D.	8:1	
659)	The hystere	esis loop can be drawn for material:			
,	A. Diamagr	netic	В.	Paramagnetic	С
	C. Ferroma	gnetic	D.	Both A & C	
660)	In terms of	which of the following properties, metals are	bet	ter than ceramics? In terms of which of the	
,	following p	roperties, metals are better than ceramics:			
	A. Hardnes	s	В.	Ductility	В
	C. Toughne	255	D.	Yield strength	
661)	Which of th	e following is true for polymers?	<u> </u>		
001	A They have	ve verv high molecular mass	B	They do not have a linear stress-strain curve	
	C They have	ve high strength to mass ratio	<u>ь</u>	All of the mentioned	D
662)	The point of	oordinates of the vertex just opposite to the c	P· vriσ	in are:	
002)		bold mates of the vertex just opposite to the e	k k		D
	$\frac{1}{0}$		<u>b.</u>	111	
662)	C. 0 I I Millor indice	os for porpondicular planos aro always tho	р.		
003)		es for perpendicular planes are always the.	Ь	Difforent	D
	A. Same	<u>,</u>	<u>р.</u> Б	None of these	Б
((1)	C. Negative	is lattices are of the turner	р.	None of these	
664)		is lattices are of the type:	Ь	Dody contored unit call	^
	A. Primitive		<u>в.</u>		A
	C. End cent	tered unit cell	<u>р.</u>	Face centered unit cell	
665)	In which of	the following Bravais lattices, not all axial ang	les	are right angles?	
	A. Tetragor		В.	Rhombonedral	В
666)	C. Orthorn		р.		
666)	Coordinatio	on number for an ideal BCC metallic crystal is:	L		
	A. 8		В.	6	A
	C. 12		D.	Varies with different metals	
667)	In Bragg's e	quation $[n\lambda = 2dsin\theta]$, θ is the angle between:	L		
	A. specime	n surface and incident rays	В.	normal to specimen surface and incident rays	
	C. parallel	lattice surfaces d distance apart and incident	Р.	normal to parallel lattice surfaces d distance apart and	C
	rays			incident rays	
668)	X-rays have	larger wavelengths than which of the following	ng?		
	A. Gamma ı	rays	В.	Beta rays	A
	C. Microwa	ave	D.	Visible light	
669)	X-ray diffra	ction patterns are used for studying crystal str	uct	ure of solids because:	
	A They hav	ve very high energy; hence they can	R	They are electromagnetic radiation, and hence do not	
	/ penetrat	e through solids		interact with matter (crystals)	C
	C Their wa	velengths are comparable to inter-atomic	h	Their high frequency enables ranid analysis	
	distances	5	Р.		
670)	Crystallinity	ν with increasing rate of cooling of a liqu	uid.		
	A. Increase	S	В.	Decreases	В
	C. Remains	unchanged	D.	None of these	
671)	Iron has a B	ody-Centered Cubic (BCC) structure with atom	nic I	radius 0.123 Å. Find the lattice constant.	
	A. 0 Å		Β.	4.587 Å	D
	C. 2.314 Å		D.	0.2840 Å	
672)	Which of th	e following covalent compounds conduct elec	tric	ity?	
	C. Lorder Different A. 1 : 1 B. 1 : 8 C. 4 : 1 D. 8 : 1 9) The hysteresis loop can be drawn formaterial: A. 1 : 1 A. Diamagnetic B. 1 = 8 9) The hysteresis loop can be drawn formaterial: A. 1 and a start in the ratio 2 : 1, their Young's modulus are in the fallowing properties, metals are better than ceramics? In terms of which of the following properties, metals are better than ceramics? In terms of which of the following properties, metals are better than ceramics? In terms of which of the following properties, metals are better than ceramics? A. Hardness B. Ductility C. Toughness D. Yield strength 1) Which of the following is true for polymers? A. A. They have high strength to mass ratio D. All of the mentioned 2) The point coordinates of the vertex just opposite to the origin are: A. A. 0 0 0 B. 0 0 1 D. C. I hay have high strength to mass ratio D. None of these 3) Miller indices for perpendicular planes are always the: A. A. Same Different C. Regative D. None of these 4) Most Bravais lattices are of the type: A. Northogen and the following Bravais lattices, not all axial angles are right angles? A. Primitive unil cell		D		
	C. Diamono	b	D.	Graphite	1
	•				

673) Which of the following substances possess the highest elasticity?				
A	. Rubber	Β.	Steel	В
C	. Glass	D.	Copper	
674) \	What is the SI unit of the modulus of elasticity of substar	nce	?	
A	. Nm ⁻²	Β.	Jm ⁻²	А
C	. Nm ⁻¹	D.	Being a number, it has no unit	
675) \	What are the dimensions of stress?		· · · · ·	
A	. MLT ⁻²	Β.	ML ⁻² T ⁻¹	С
С	. ML ⁻¹ T ⁻²	D.	MLT ⁻¹	
676) A	rubber cord of cross-sectional area 2cm2 has a length o	of 1	m. When a tensile force of 10N is applied the length of	
th	e cord increases by 1cm. What is the youngs modulus or	f ru	bber?	
A	. 2×10 ⁸ Nm ⁻²	Β.	5×10 ⁶ Nm ⁻²	В
С	. 0.5×10 ⁻⁶ Nm ⁻²	D.	0.2×10 ⁻⁶ Nm ⁻²	
677) N	Materials that undergo plastic deformation before break	ing	are called	
Á	Brittle	В.	Ductile	В
c	. Amorphous	D.	Polymers	
678) A	ny alteration produced in shapes length or volume when	n a	body is subjected to some external force is called:	
Α	Stiffness	В.	Toughness	-
C	Extension	D.	Deformation	D
679) 1	The Curie temperature is that at which:	F.		
Δ	Semiconductor becomes conductors	B	Ferromagnetic becomes paramagnetic	В
	Paramagnetic becomes diamagnetic	b.	Metals become superconductor	
680) 4	A ferromagnet will become fully magnetized at:	р.	Metals become superconductor	
	High voltage A C	B	Low voltage A C	C
	Alternating current at its neak value	b.	D C current at neak value	
681) M	Aterials in which valence electrons are tightly bound to	the	pir atoms at low temperature are called	
	Semiconductors	k	Superconductors	C
	Insulator	р. Б	Conductors	- ŭ
682) T	he hand theory of solids explains satisfactorily the natur	<u>P</u> .	f	
A. High Voltage A.C b. Low Voltage A.C C. Alternating current at its peak value b. D.C current at peak value 681) Materials in which valence electrons are tightly bound to their atoms at low temperature are called A. Semiconductors b. Superconductors C. Insulator b. Conductors 682) The band theory of solids explains satisfactorily the nature of: A. A. Electrical insulators alone B.				
	Electrical insulators alone	p.		
6831 0	vacant or partially filled hand is called:	р.	All of the above	
005) A	Conduction hand	Ь	Valence hand	Λ
	Earbiddon band	þ.	Empty band	
694) 4	(hat type of hending makes up coramic materials?	р.		
004)		Ь	London dispersion forces	^
	Notallia handa	р. Б		
	. Interallic portos	р.		
085)11	Vield stress	Ь	functions atrace	
	. Mela stress	в.	Indulure stress	
	l are attributes of coromics, events	р.		
080) 41	are altributes of ceramics, except:	Ь	laur malting maint	
A	bish stiffnass	в.	low meiting point	В
	. Inign stimmess	р.	High hardness	
687) AI	l are not attributes of metals, except:	Ь	the second time to be used	
	electrical insulators	<u>в</u> .	thermal insulators	
C	. Inign melting points	р.	lanctile	
688)	Below are examples of plastic deformation, except:	<u> </u>		-
A	. Ja wire coiled 10 times around a magnetic core	В.	broken glass	В
C	. bent nail in wood	P.	molded clay	
689) Tł	ne larger the spring constant, the spring would be more:			

A. Ex	ktensible	Β.	Stiffer	В
C. co	ompressive	D.	brittle	
690) Pressu	ure in fluid depends upon:			
A. De	epth below the surface	Β.	Density of fluid	D
C. Th	ne value of g	D.	All of above	
691) Partic	les that most effects material properties:			
A. Ne	eutrons	Β.	Protons	D
C. Ele	ectrons	D.	Valance electron	
692) Which	h one of the following is not a strong bond?			
A. Va	an der Waals forces	Β.	Covalent bonds	А
C. M	letallic bonds	D.	lonic bonds	
693) Schott	tky-defect in ceramic material is:			
A. Int	terstitial impurity	Β.	Vacancy interstitial pair of cations	С
C. Pa	air of nearby cation and anion vacancies	D.	Substitutional impurity	
694) Flow	of electrons is affected by the following:			
A. Th	nermal vibrations	Β.	Impurity atoms	D
C. Cr	rystal defect	D.	All of these	
695) A unit	t cell that contains lattice points only at the corners is	s kr	iown as:	
A. Pr	imitive unit cell	Β.	Secondary unit cell	А
C. La	ayered unit cell	D.	Derived unit cell	
696) Pure s	silicon at 0 K is an:			
A. Int	trinsic semiconductor	Β.	Extrinsic semiconductor	D
C. M	letal	D.	Insulator	
697) The er	nergy required to break a covalent bond in a semicor	ndu	ctor:	
A. Eq	qual to 1 eV	Β.	Is equal to the width of the forbidden gap	В
C. Is	greater in Ge than in Si	D.	Is the same in Ge and Si	

(PHYSICS (OPTICS AND LASERS)

		Answer Key
698) Directionality property of laser can be used i	n	D
A. surveying	B. remote sensing	
C. lidar	D. All Correct	
699) Nd - YAG laser is a		С
A. two level laser	B. Three level laser	
C. Four level laser	D. Five level laser	
700) In Nd-YAG laser, YAG means		D
A. Yttrium Aluminum	B. $Y_3Al_5O_{12}$	
C. Yellow Aluminum	D. Both A and B	
701) The pumping source in Nd: YAG laser is		B`
A Chemical	B optical	
C Electrical	D. Mechanical	
702) The active medium in Nd: YAG laser is	p. prechanical	Δ
(02) The active medium in rul. The faser is		11
A. Nd	B. YAG	
C. Y	D. AD 1	
703) The ratio of He to Ne in He-Ne laser is		А
A. 1:10	B. 2:13	

	C. 10:1	D.	3:15	
704)	Which is correct about laser			A
	A. monochromatic	Β.	white	
	C. bi-chromatic	D.	none	
705)	Population inversion in laser means			В
	A. number of atoms in ground state are more than number of atoms in excited state	В.	number of atoms in ground state are less than number of atoms in excited state	
	number of atoms in ground state is equal to number of atoms in excited state	D.	none	
706)	Why are lasers used for cutting materials			D
	A. It never gets dull	Β.	Repeatability	
	C. Accuracy	D.	All of the above	
707)	What does the acronym LASER stand for?			В
	A. Light Absorption by Stimulated Emission of Radiation	Β.	Light Amplification by Stimulated Emission of Radiation	
	C. Light Alteration by Stimulated Emission of Radiation	D.	Light Attracted by Stimulated Emission of Radiation	
708)	Which scientist first came up with the idea of stimulated em	issi	on?	D
	A. Alexander Graham Bell	Β.	Isaac Newton	
	C. Arthur Schalow	D.	Albert Einstein	
709)	What determines the color of light?			В
, í	Ç			
	A. its intensity	Β.	its wavelength	
	C. its source	D.	All of these	
710)	Snell's law relates			С
	A. Light Reflection	Β.	Light Transmission	
	C. Light Refraction	D.	Light Absorption	
711)	Wavelength of He-Ne laser is			В
	A. 6928Å	Β.	6328Å	
	C. 6428Å	D.	6398Å	
712)	Principle of laser is			В
	A. Spontaneous absorption	Β.	Stimulated emission	
	C. Induced emission	D.	Both b and c	
713)	Spontaneous emission has the following disadvantages over s	tim	ulated emission:	D
	A. Incoherent	Β.	Polychromatic	
	C. Less Intensity and Less directionality	D.	All are correct	
714)	MASER stands for?		•	А
	A. Microwave Amplification by Stimulated Emission of Radiation	Β.	Maximum Amplification by Stimulated Emission of Radiation	
	C. Magnified Amplification by irradiated Emission of	D.	None of these	-
715)	Radiation Visible light's wavelength range			C
(13)	A lo 20 0 77	b	0.20.0.77	
	A. U.39-U. / /mm	В.	0.39-0.7/μm	4
	C. 0.39-0.7/nm	υ.	0.39-0.77cm	
716)	Metals can the light beams.			
	A. reflect	Β.	Refract	1

	C.	All of these	D.	Transmit	A	
717)	Sr	nell's law relates			В	
	A.	Light Reflection	B.	Light Refraction	-	
	C.	Light Transmission	D.	Light Absorption	-	
718)	Op	tically active crystals rotate the?			С	
	A.	Vibrating plane	Β.	Interference plane		
	C.	Polarization plane	D.	Diffraction plane		
719)	Wh	en light incident normally on thin film, the path different	ence	e depends upon?	D	
	A.	Thickness of the film only	В.	The angle of incidence only		
	C.	Nature of the film only	D.	All thickness, nature, and angle of incidence		
720)	H	uygen wave theory explain?	-		A	
	A.	Diffraction	В.	Polarization	_	
721)	C.	Interference	<u>р</u> .	Photoelectric effect		
721)	ACC A	waves	B	Photons	В	
	<u>д.</u> С	narticles	D.	None of these	-	
722)	U. WI	particles hich one of the following is nearly monochromatic light	<u>P</u> . !?		В	
,	A.	Light from a fluorescent tube	В.	Light from a sodium lamp		
	C.	Light from a mercury lamp	D.	Light from a simple lamp	-	
723)	Т	wo sources of light are coherent if they emit rays of?	Γ.	Zigin nom a simple tamp	С	
(23)	A.	Same wavelength	Β.	Same wavelength with a constant phase difference	1	
	C.	The same amplitude of vibration	D.	Same amplitude and wavelength	1	
724)	724) In Young's double slit experiment, the fringe spacing is equal to (d=slit separation and D = distance of the screen					
	froi	m slits):	-	· · ·		
	A.	dλD	Β.	2λd/D		
	C.	$\lambda D/d$	D.	λd/D		
725)	ln t	the Young double-slit experiment, if white light is used	?		В	
	A.	Alternate dark and bright fringes will be seen	Β.	Colored fringes will be seen		
	C.	No interference fringes will be seen	D.	Impossible to predict		
726)	In	an interference pattern:			D	
	A.	Bright fringes are wider than dark fringes	В.	Dark fringes are wider than bright fringe		
	C.	Dark fringes are wider than bright fringe	D.	Both dark and bright fringes are of equal width		
727)	In N	Young's double-slit experiment, the separation betweer een is doubled. The fringe width is	ı th	e slit is halved and the distance between the slit and	D	
	A.	Remain the same	В.	Double	-	
	C	Half	<u> </u>	Quadrupled	-	
728)	C. Wh	nen one mirror of a Michelson Interferometer is moved	p. ad	listance of 0.5 mm, we observe 2000 fringes. What will	B	
/20)	be a	a wavelength of light used?			2	
	A.	5000nm	Β.	500m	-	
	C.	5000A°	D.	2000µm	-	
729)	Lig	ht on passing through a Polaroid is?	-	1	A	
,	A.	Plane polarized	В.	Un-polarized		
	C.	Circularly polarized	D.	Elliptically polarized	-	
730)	Wh	tich one of the following cannot be polarized?	Γ.	~ * ×	В	
	Α.	Radio waves	В.	Ultraviolet rays	1	
	C.	X-rays	D.	Ultrasonic waves	-	
731)	[n ·	a double-slit experiment, if one of the two-slit is covered	l th	en?	Δ	
(31)	A	No interference fringes are observed	B	No fringes observed		
	- - •		Ľ.			

C.	No diffraction fringes are observed	D.	Interference pattern not disturbed	
732) In	Michelson interferometer to switch the fringe from br	igh	t to dark the mirror should be displaced through?	D
Α. λ	N5	<u>в</u> .	λ/6	
C.	$\lambda/3$	D.	$\lambda/4$	
722) W	high appariment shares that manalenath of light is small	[].	then that of sound?	
(33) WI	Diffraction	h	Polorization	Δ
А.	Diffaction	В.		
C.	Interference	D.	Reflection	
734) A co	onvex lens gives a virtual image only when the objects l	ies	1	D
A. I	Between principal focus and center of curvature	Β.	Beyond 2 f	_
C. A	At the principal focus	<u>р.</u>	Between the principal focus and an optical center	
(735) If an	n object is placed away from 2f of a converging lens the	en t	the image will be	C
A. I	Real and erect	В.	Virtual and erect	
736) The	minimum distance between an object and its real image	<u>р</u> .	virtual	C
730) The	finninum distance between an object and its real imag	ge i B	2 Sf	
<u>л.</u> 2 С. 4	1f	p. h	2.51 3f	_
737) The	nower of a concave lens is	ρ.	51	B
A. H	Real	B.	negative	
C. V	Virtual	D.	Positive	
738) The	diameter of a lens is called	p.		В
A. H	Focal length	B.	Aperture	_
С. І	Principal axis	D.	Radius of curvature	
739) A p	pint where the incident parallel rays of light converge of	or a	appear to diverge after passing through a lens is called	С
Á. (Center of curvature	Β.	Optical center	
C. I	Focus	D.	Aperture	
740) A lei	ns, which is thicker at the centre and thinner at the ed	ges	is called	С
A. (Concave lens	В.	Plano-convex lens	
C. (Convex lens	D.	Plano-concave lens	
741) A sp	pectrometer is used to find			D
A. 1	Wavelength of light	Β.	The wavelength of different colors	
C. I	Refractive index of the prism	D.	All of the above	
742) A co	onvex and concave lens of focal length f is in contact the	e fo	ocal length of the combinations will be	
A. ()	Β.	infinite	В
C. I	F12	D.	2f	
743) Mag	gnification of the astronomical telescope is	L		C
A. t	to+te	В.		_
C. [1	to/te	р.	(1+fo/fe)L/fo	D
/44) <u>I'he</u>	equation $\theta = 1.22 \text{ MD}$ was devised by	Þ	Dalaiah	В
A.	Finetein	р. Г		-
	Dilisteril	μ.	I TAILINS	D
	The object is beyond C	R	If the object is within f	
A. I	If the object is within C	p. h	Both B and C	
746) Micl	helson calculated the sneed of light using the instrume	p. nte	both b and c	Δ
	Snectrometer	R	Interferometer	
C	Galvanometer	D.	None of these	_
747) The	function of a collimator in the spectrometer is	ρ.		А
A. 1	To produce parallel beams of light	B.	To make them	
C. 1	To filter the light rays	D.	No function	1
748) In	a double slit experiment. we observe	1	1	В
A. I	Interference fringes only	B.	Both interference and diffraction fringes	1
C. I	Diffraction fringes only	D.	Polarized fringes	1
749) Whi	ich one of the following properties of light does not cha	nge	e with the nature of the medium?	D
A. 1	Velocity	Β.	Amplitude	1
C. 1	Wavelength	D.	Frequency	1
· · · ·				

750) Central spot of Newton's rings	А	1
A. Bright	B. Dark	
C. Dark for large wavelength	D. Bright for large wavelength	
751) Diffraction fringes are	В	3
A. Equally spaced	B. The distance between then decreases	
C. The distance between them increases	D. They are adjacent with no space in between	
752) A thing that emits its own light is	A	1
A. Luminous	B. Non-luminous	
C. Incandescent	D. Bright	
753) Optical active crystals rotates the	В	3
A. vibrating plane	B. polarization plane	
C. diffraction plane	D. interference plane	
754) Which is not optically active?	C	
A. Sugar	B. Tartaric acid	
C. Water	D. sodium chlorate	
755) Light reaches the earth form sun in nearly	D)
A. 15 minutes	B. 8 minutes	
C. 10 minutes	D. 8 minutes 30 second	
756) appearance of color in thin films is due to	C	
A. Diffraction	B. Dispersion	
C. Interference	D. polarization	
757) The blue color of the sky is due to	В	3
A. Diffraction	B. Scattering	
C. Polarization	D. Reflection	

(PHYSICS: MMP)

			Answer Kev
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
758) A "periodic function" is given by a function which			В
A. Has a period $T = 2\pi$	Β.	Satisfies $f(t+T) = f(t)$	
C. Satisfies $f(t+T) = -f(t)$	D.	Has a period T = $\pi$	
759) Which of the following is an "even" function of t?			А
A. $t^2$	Β.	$t^2 - 4t$	
C. $Sin(2t) + 3t$	D.	$t^{3} + 6$	
760) What are Fourier coefficients?			С
A. The terms that are present in the Fourier series	Β.	The terms that are obtained through Fourier series	
C. The terms which consist of the Fourier series along with	D.	The terms which are of resemblance to Fourier transform	
their sine or cosine values		in a Fourier series	
761) Which are the Fourier coefficients in the following?			А
A. $a_0$ , $a_n$ and $b_n$	Β.	a _n	
C. $b_n$	D.	a _n and b _n	
762) What is the disadvantage of exponential Fourier series?			С
A. It is tough to calculate	Β.	It is not easily visualized	
C. It cannot be easily visualized as sinusoids	D.	It is hard for manipulations	
763) How does Fourier series make it easier to represent periodic	sign	als?	А
A. Harmonically related	Β.	Periodically related	
C. Sinusoidally related	D.	Exponentially related	
764) Laplace transform is a			А
A. Linear operation	Β.	Non-linear operation	
C. Static operation	D.	Dynamic operation	
765) The inverse Laplace transform is known as the			Α
A. Bromwich intergral	В.	Miller Integral	

	C. Newton integral	D.	Gauss Integral	
766)	Laplace's use of generating functions was similar to what is n	ow	known as the	В
	A. p-transform	Β.	z-transform	
	C. s-transform	D.	e-transform	
767)	Laplace transform of 1 is			А
	A. 1/s	Β.	s	
	C. s/2	D.	2/s	
768)	The Laplace transform for continuous time signals is a			В
, i i	A. Time domain approach	Β.	Frequency domain approach	
	C. Distance domain approach	D.	Coordinated domain approach	-
769)	Y'' + ay' + by = 2x is a ODE		III III	D
,	A. Non-linear	Β.	Homogenous	
	C. Non-homogenous	D.	Linear and non-homogenous	
770)	What is another name for the gamma function?	<u> </u>		В
,	A. Euler's integral of the first kind	B.	Euler's integral of the second kind	
	C. The beta function	D.	The zeta function	-
771)	A system consisting of two particles moves on a plane. Then t	the o	degree of freedom is	С
,,,,,	A 2	R	3	Ĩ
	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}$	D.	6	
772)	For a conservative holonomic dynamical system, the Lagrang	p. ian	U kinetic energy T and potential energy V are connected	B
112)	by	1411	L, kinetie chergy I and potential chergy V are connected	D
	$\Lambda I - T + V$	R	I – T V	-
	$\begin{array}{c} A \cdot L - 1 + V \\ C \cdot L - 2T + V \end{array}$	p. h	$\mathbf{L} = 1 - \mathbf{V}$ $\mathbf{I} = 2\mathbf{T} - \mathbf{V}$	
772)	C. $L = 21 + v$	ρ.	L = 21 - V	C
115)	A the physical services of the motion	b	The condition under which no motion is encount	
	A. the physical causes of the motion	В.	The condition under which no motion is apparent	
774)	C. The geometry of the motion	ρ.	None of these	•
//4)	I ne basis of polynomial interpretation is	Ь	XXZ · · · · · · · · · · · · · · · · · ·	A
	A. Taylor's Theorem	В.	Weierstrass Approximation Theorem	
775)	C. Kolle's Theorem	<u>p.</u>	Mean value Theorem	D
115)	Mathematical Expectation of the product of two random vari		Is the second se	В
	A. Any two random variables	В.	If the random variables are independent	
	C. If the covariance between the random variables is non	р.	If the variance of the random variable are equal	
77()	Zero The dense is where function $f(x) = 2x^2 - 1$ and $g(x) = 1 - 2x$ as		evel is	D
//6)	I ne domain where function $f(x) = 2x^2 - 1$ and $g(x) = 1 - 3x$	re e	qual, is	D
	$\frac{A. \{1/2\}}{C. \{1/2, 2\}}$	В.	{ <i>2</i> }	
777	$\frac{[C, [\{1/2, 2\}]}{[C, 1]}$	р.	$\{1/2, -2\}$	D
///)	Domain of the function $\cos^{-}(4x - 1)$ is	<b>b</b>	ro 1/01	В
	$\frac{A. (0, 1/2)}{A. (0, 1/2)}$	В.	[0, 1/2]	-
770)	[C. [[1/2, 2]]]	р.	None of these	
778)	The number of real solutions of the equation $ \mathbf{x} ^2 - 3 \mathbf{x}  + 2 = 0$	)	4	A
	A. 4	В.		-
	C. 3	1)	2	
		<u>P</u> .		D
//9)	The number of the real solutions of the equation $x^2 - 3 x  + 2 = 1$	= 0		D
//9)	The number of the real solutions of the equation $x^2 - 3 x  + 2 = A$ . 2	<u>р.</u> = 0 В.	4	D
//9)	The number of the real solutions of the equation $x^2 - 3 x  + 2 = \frac{A}{C} \frac{2}{1}$	р. = 0 В. D.	4 3	D
779)	The number of the real solutions of the equation $x^2 - 3 x  + 2 = A$ . A. 2 C. 1 In Bessel's function, $P_n(1) =$	= 0 В. D.	4 3	D
779)	The number of the real solutions of the equation $x^2 - 3 x  + 2 = A$ . A. 2 C. 1 In Bessel's function, $P_n(1) = A$ .	<u>р.</u> = 0 В. D. В.	4 3 -1	D
779)	The number of the real solutions of the equation $x^2 - 3 x  + 2 = \frac{A}{2}$ C. 1 In Bessel's function, $P_n(1) = \frac{A}{0}$ C. Equal to $P_n(-1)$	р. = 0 В. D. В. D.	4 3 -1 1	D
780)	The number of the real solutions of the equation $x^2 - 3 x  + 2 = A$ . A. 2 C. 1 In Bessel's function, $P_n(1) = A$ . A. 0 C. Equal to $P_n(-1)$ In Bessels's function, $P_n(x)$ is a	<u>р.</u> = 0 <u>В.</u> <u></u> . <u></u> .	4 3 -1 1	D
779) 780) 781)	The number of the real solutions of the equation $x^2 - 3 x  + 2 = A$ . A. 2 C. 1 In Bessel's function, $P_n(1) = A$ . A. 0 C. Equal to $P_n(-1)$ In Bessels's function, $P_n(x)$ is a A. Non-terminating series	<u>р.</u> = 0 <u>В.</u> <u></u> . <u></u> . <u></u> . <u></u> .	4 3 -1 1 Oscillatory series	D
780) 781)	The number of the real solutions of the equation $x^2 - 3 x  + 2 = A$ . A. 2 C. 1 In Bessel's function, $P_n(1) = A$ . A. 0 C. Equal to $P_n(-1)$ In Bessels's function, $P_n(x)$ is a A. Non-terminating series C. Terminating series	B. D. B. D. B. D.	4 3 -1 1 Oscillatory series None of these	D C
779) 780) 781) 782)	$\begin{array}{l} \hline \mbox{The number of the real solutions of the equation $x^2 - 3 x  + 2$ : } \\ \hline \mbox{A. } 2 \\ \hline \mbox{C. } 1 \\ \hline \mbox{n Bessel's function, $P_n(1) = $$ \\ \hline \mbox{A. } 0 \\ \hline C. Equal to $P_n(-1)$ \\ \hline \mbox{n Bessels's function, $P_n(x)$ is a $$ \\ \hline \mbox{A. Non-terminating series $$ \\ \hline \mbox{C. Terminating series $$ \\ \hline \mbox{n Bessel's function, $P_n(-1) = $$ \\ \hline \mbox{m Bessel's function, $P_n(-1) = $$ \\$	р. = 0 В. D. В. D. В.	4 3 -1 1 Oscillatory series None of these	D C D
779) 780) 781) 782)	$\begin{array}{l} \hline \mbox{The number of the real solutions of the equation $x^2 - 3 x  + 2$ : } \\ \hline \mbox{A. } 2 \\ \hline \mbox{C. } 1 \\ \hline \mbox{n Bessel's function, $P_n(1) = $$ \\ \hline \mbox{A. } 0 \\ \hline \mbox{C. Equal to $P_n(-1)$} \\ \hline \mbox{n Bessels's function, $P_n(x)$ is a $$ \\ \hline \mbox{A. } Non-terminating series $$ \\ \hline \mbox{C. Terminating series $$ \\ \hline \mbox{n Bessel's function, $P_n(-1) = $$ \\ \hline \mbox{A. } -1 $$ \\ \hline \mbox{A. } -1 $$ \\ \hline \mbox{Descent series $$ \\ \hline \mbox{n Bessel's function, $P_n(-1) = $$ \\ \hline \mbox{A. } -1 $$ \\ \hline \mbox{Descent series $$ \\ \hline \mbox{n Bessel's function, $P_n(-1) = $$ \\ \hline \mbox{A. } -1 $$ \\ \hline \mbox{Descent series $$ \\ \hline \mbox{n Bessel's function, $P_n(-1) = $$ \\ \hline \mbox{A. } -1 $$ \\ \hline \mbox{Descent series $$ \\ \hline \mbox{Descent series $$ \\ \hline \mbox{n Bessel's function, $P_n(-1) = $$ \\ \hline \mbox{A. } -1 $$ \\ \hline Descent series $$ \\ \hline \mbox{Descent series $$ \\ \hline \mbox{Des$	<u>в.</u> <u>В.</u> <u>В.</u> <u>В.</u> <u>В.</u> <u>В.</u> <u>В.</u>	4 3 -1 1 Oscillatory series None of these 0	D C D
779) 780) 781) 782)	$\begin{array}{l} \hline \mbox{The number of the real solutions of the equation $x^2 - 3 x  + 2$ : } \\ \hline \mbox{A. } 2 \\ \hline \mbox{C. } 1 \\ \hline \mbox{In Bessel's function, $P_n(1) = $$ \\ \hline \mbox{A. } 0 \\ \hline \mbox{C. } Equal to $P_n(-1)$ \\ \hline \mbox{In Bessels's function, $P_n(x)$ is a $$ \\ \hline \mbox{A. } Non-terminating series $$ \\ \hline \mbox{C. } Terminating series $$ \\ \hline \mbox{In Bessel's function, $P_n(-1) = $$ \\ \hline \mbox{A. } -1 \\ \hline \mbox{C. } 1 \end{array}$	<u>в.</u> <u>в.</u> <u>р.</u> <u>в.</u> <u>р.</u> <u>в.</u> <u>р.</u>	4 3 -1 1 Oscillatory series None of these 0 (-1) ⁿ	D C D
779) 780) 781) 782) 783)	The number of the real solutions of the equation $x^2 - 3 x  + 2 =$ A.       2         C.       1         In Bessel's function, $P_n(1) =$ A.       0         C.       Equal to $P_n(-1)$ In Bessels's function, $P_n(x)$ is a         A.       Non-terminating series         C.       Terminating series         In Bessel's function, $P_n(-1) =$ A. $-1$ C.       1         Filter form of p/q where p,q be	B.       D.       B.       D.       B.       D.       B.       D.	$4$ 3 -1 1 Oscillatory series None of these $0$ (-1) ⁿ ng to Z, q $\neq 0$ are	D C D A

C. Natural numbers	D. Integers	
784) The numbers which cannot be put in the form of $p/q$ v	where p,q belong to Z, $q \neq 0$ are	В
A. Rational numbers	B. Irrational numbers	
C. Complex numbers	D. Whole numbers	
785) 🛙 is a		В
A. Rational	B. Irrational	
C. Natural number	D. None	
786) 5.333 is		А
A. Rational	B. Irrational	
C. An Integer	D. A prime integer	
787) If any matrix A has only one row, then it is called		A
A. Row matrix	B. Column matrix	
C. Square matrix	D. Rectangular matrix	
788) If a matrix A has same number of rows and columns,	then A is called	С
A. Row matrix	B. Column matrix	
C. Square matrix	D. Rectangular matrix	
789) If any matrix A has different numbers of rows and col	umns, then A is	D
A. Row matrix	B. Column matrix	
C. Square matrix	D. Rectangular matrix	
790) Two matrix A and B are said to be conformable for ac	ldition if	D
A. Number of columns in $A =$ number of rows in B	B. Number of rows in $B =$ number of columns	
C. Rows of $A =$ columns of B	D. Order of $A = $ order of $B$	
791) I radian is equal to degrees.		A
A. 57.296	B. 5.7296	
C. 175.27	D. 17.527	
792) An arrangement of numbers according to some definit	te rule is called	A
A. Sequence	B. Combination	
C. Series	D. Permutation	
702) / 1 1		D
(93) A sequence is also known as		D
A. Real sequence	B. Progression	D
A sequence is also known as A. Real sequence C. Arrangement	B. Progression D. Complex sequence	D
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> </ul>	<ul><li>B. Progression</li><li>D. Complex sequence</li></ul>	
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> </ul>	<ul> <li>B. Progression</li> <li>D. Complex sequence</li> <li>B. Rational Numbers (O)</li> </ul>	B
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> </ul>	<ul> <li>B. Progression</li> <li>D. Complex sequence</li> <li>B. Rational Numbers (Q)</li> <li>D. Real numbers</li> </ul>	B
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers.</li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       Image: Complex sequence	C
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       B.	В
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       B.         B.       Imaginary sequence         D.       Complex sequence	C
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, a.b =</li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       Imaginary sequence         D.       Complex sequence         D.       Complex sequence	C
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. labsinΘ</li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       B.         B.       Imaginary sequence         D.       Complex sequence         B.       Imaginary sequence         B.       abcosθ	C
<ul> <li>793) A sequence is also known as <ul> <li>A. Real sequence</li> <li>C. Arrangement</li> </ul> </li> <li>794) A sequence is a function whose domain is set of <ul> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> </ul> </li> <li>795) A sequence whose range is R i.e. set of real numbers, <ul> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> </ul> </li> <li>796) In vector mechanics, <b>a.b</b> = <ul> <li>A. absinΘ</li> <li>C. abtanΘ</li> </ul> </li> </ul>	B. Progression         D. Complex sequence         B. Rational Numbers (Q)         D. Real numbers         is called         B. Imaginary sequence         D. Complex sequence         B. abcosΘ         D. ab	C
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. absinØ</li> <li>C. abtanØ</li> <li>797) A vector having magnitude only is called</li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       B.         Imaginary sequence       D.         Complex sequence       B.         AbcosΘ       D.         D.       ab	C
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of <ul> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> </ul> </li> <li>795) A sequence whose range is R i.e. set of real numbers, <ul> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> </ul> </li> <li>796) In vector mechanics, <b>a.b</b> = <ul> <li>A. absinΘ</li> <li>C. abtanΘ</li> </ul> </li> <li>797) A vector having magnitude only is called <ul> <li>A. Scalar</li> </ul> </li> </ul>	<ul> <li>B. Progression</li> <li>D. Complex sequence</li> <li>B. Rational Numbers (Q)</li> <li>D. Real numbers</li> <li>is called</li> <li>B. Imaginary sequence</li> <li>D. Complex sequence</li> <li>B. abcos </li> <li>B. Babcos </li> <li>B. Resultant</li> </ul>	C
793) A sequence is also known as         A. Real sequence         C. Arrangement         794) A sequence is a function whose domain is set of         A. Integers (Z)         C. Natural numbers         795) A sequence whose range is R i.e. set of real numbers,         A. Real sequence         C. Natural sequence         C. Natural sequence         796) In vector mechanics, $\mathbf{a.b} =$ A. absin $\Theta$ C. abtan $\Theta$ 797) A vector having magnitude only is called         A. Scalar         C. Unit vector	<ul> <li>B. Progression</li> <li>D. Complex sequence</li> <li>B. Rational Numbers (Q)</li> <li>D. Real numbers</li> <li>is called</li> <li>B. Imaginary sequence</li> <li>D. Complex sequence</li> <li>B. abcos </li> <li>B. abcos </li> <li>B. Resultant</li> <li>D. Temperature</li> </ul>	C
<ul> <li>793) A sequence is also known as <ul> <li>A. Real sequence</li> <li>C. Arrangement</li> </ul> </li> <li>794) A sequence is a function whose domain is set of <ul> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> </ul> </li> <li>795) A sequence whose range is R i.e. set of real numbers, <ul> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> </ul> </li> <li>796) In vector mechanics, <b>a.b</b> = <ul> <li>A. absinΘ</li> <li>C. abtanΘ</li> </ul> </li> <li>797) A vector having magnitude only is called <ul> <li>A. Scalar</li> <li>C. Unit vector</li> </ul> </li> <li>798) The vector product of two vectors is also called</li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       Imaginary sequence         D.       Complex sequence         B.       abcosΘ         D.       ab         B.       Resultant         D.       Temperature	C
<ul> <li>793) A sequence is also known as <ul> <li>A. Real sequence</li> <li>C. Arrangement</li> </ul> </li> <li>794) A sequence is a function whose domain is set of <ul> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> </ul> </li> <li>795) A sequence whose range is R i.e. set of real numbers, <ul> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> </ul> </li> <li>796) In vector mechanics, <b>a.b</b> = <ul> <li>A. absinΘ</li> <li>C. abtanΘ</li> </ul> </li> <li>797) A vector having magnitude only is called <ul> <li>A. Scalar</li> <li>C. Unit vector</li> </ul> </li> <li>798) The vector product of two vectors is also called <ul> <li>A. Scalar product</li> </ul> </li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       B.         B.       Imaginary sequence         D.       Complex sequence         B.       abcosΘ         D.       ab         B.       Resultant         D.       Temperature	C
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. absinΘ</li> <li>C. abtanΘ</li> <li>797) A vector having magnitude only is called</li> <li>A. Scalar</li> <li>C. Unit vector</li> <li>798) The vector product of two vectors is also called</li> <li>A. Scalar product</li> <li>C. Point product</li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       B.         B.       Imaginary sequence         D.       Complex sequence         B.       abcosθ         D.       ab         B.       Resultant         D.       Temperature         B.       Dot product         D.       Cross product	C
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. absinΘ</li> <li>C. abtanΘ</li> <li>797) A vector having magnitude only is called</li> <li>A. Scalar</li> <li>C. Unit vector</li> <li>798) The vector product of two vectors is also called</li> <li>A. Scalar product</li> <li>C. Point product</li> <li>799) Projection of vector A in the direction of x-axis is rep</li> </ul>	B. Progression         D. Complex sequence         B. Rational Numbers (Q)         D. Real numbers         is called         B. Imaginary sequence         D. Complex sequence         B. abcosO         D. ab         B. Resultant         D. Temperature         B. Dot product         D. Cross product	В А В В С
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. absinΘ</li> <li>C. abtanΘ</li> <li>797) A vector having magnitude only is called</li> <li>A. Scalar</li> <li>C. Unit vector</li> <li>798) The vector product of two vectors is also called</li> <li>A. Scalar product</li> <li>C. Point product</li> <li>799) Projection of vector A in the direction of x-axis is rep</li> </ul>	<ul> <li>B. Progression</li> <li>D. Complex sequence</li> <li>B. Rational Numbers (Q)</li> <li>D. Real numbers</li> <li>is called</li> <li>B. Imaginary sequence</li> <li>D. Complex sequence</li> <li>B. abcos </li> <li>B. abcos </li> <li>B. Resultant </li> <li>D. Temperature</li> <li>B. Dot product </li> <li>D. Cross product </li> <li>resented by the angle of </li> <li>B. Sin</li> </ul>	C
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. absinΘ</li> <li>C. abtanΘ</li> <li>797) A vector having magnitude only is called</li> <li>A. Scalar</li> <li>C. Unit vector</li> <li>798) The vector product of two vectors is also called</li> <li>A. Scalar product</li> <li>C. Point product</li> <li>799) Projection of vector A in the direction of x-axis is rep</li> <li>A. Cos</li> </ul>	<ul> <li>B. Progression</li> <li>D. Complex sequence</li> <li>B. Rational Numbers (Q)</li> <li>D. Real numbers</li> <li>is called</li> <li>B. Imaginary sequence</li> <li>D. Complex sequence</li> <li>B. abcos <ul> <li>B. abcos</li> <li>D. ab</li> </ul> </li> <li>B. Resultant <ul> <li>D. Temperature</li> </ul> </li> <li>B. Dot product <ul> <li>D. Cross product</li> <li>D. Cross product</li> <li>P. Both A and B</li> </ul> </li> </ul>	B       C       A       B       C       D       A
<ul> <li>793) A sequence is also known as <ul> <li>A. Real sequence</li> <li>C. Arrangement</li> </ul> </li> <li>794) A sequence is a function whose domain is set of <ul> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> </ul> </li> <li>795) A sequence whose range is R i.e. set of real numbers, <ul> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> </ul> </li> <li>796) In vector mechanics, <b>a.b</b> = <ul> <li>A. absinΘ</li> <li>C. abtanΘ</li> </ul> </li> <li>797) A vector having magnitude only is called <ul> <li>A. Scalar</li> <li>C. Unit vector</li> </ul> </li> <li>798) The vector product of two vectors is also called <ul> <li>A. Scalar product</li> <li>C. Point product</li> </ul> </li> <li>799) Projection of vector A in the direction of x-axis is rep <ul> <li>A. Cos</li> <li>C. Tan</li> </ul> </li> </ul>	<ul> <li>B. Progression</li> <li>D. Complex sequence</li> <li>B. Rational Numbers (Q)</li> <li>D. Real numbers</li> <li>is called</li> <li>B. Imaginary sequence</li> <li>D. Complex sequence</li> <li>B. abcos </li> <li>B. abcos </li> <li>D. ab</li> <li>B. Resultant </li> <li>D. Temperature</li> <li>B. Dot product </li> <li>D. Cross product </li> <li>resented by the angle of </li> <li>B. Sin </li> <li>D. Both A and B </li> </ul>	B C C A B C C C C C C C C C C C C C C C
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. absinΘ</li> <li>C. abtanΘ</li> <li>797) A vector having magnitude only is called</li> <li>A. Scalar</li> <li>C. Unit vector</li> <li>798) The vector product of two vectors is also called</li> <li>A. Scalar product</li> <li>C. Point product</li> <li>799) Projection of vector A in the direction of x-axis is rep</li> <li>A. Cos</li> <li>C. Tan</li> <li>800) Scalar product of A.B with angle 180 degrees would p</li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       Imaginary sequence         D.       Complex sequence         B.       abcosΘ         D.       ab         B.       Resultant         D.       Temperature         B.       Dot product         D.       Cross product         resented by the angle of       Sin         D.       Both A and B         produce results equal to       B	B C C A B C C C D C A B C C A B C C B C B C B C B C B C B
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. absinΘ</li> <li>C. abtanΘ</li> <li>797) A vector having magnitude only is called</li> <li>A. Scalar</li> <li>C. Unit vector</li> <li>798) The vector product of two vectors is also called</li> <li>A. Scalar product</li> <li>C. Point product</li> <li>799) Projection of vector A in the direction of x-axis is rep</li> <li>A. Cos</li> <li>C. Tan</li> <li>800) Scalar product of A.B with angle 180 degrees would p</li> <li>A. A.B</li> <li>C. AB</li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       B.         B.       Imaginary sequence         D.       Complex sequence         B.       abcosΘ         D.       ab         B.       Resultant         D.       Temperature         B.       Dot product         D.       Cross product         resented by the angle of       B.         B.       Sin         D.       Both A and B         produce results equal to       B.         B.       (-AB)         D.       D	B C C A B C C D A A B A B A B A B B B B B B B B B B B
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. absinΘ</li> <li>C. abtanΘ</li> <li>797) A vector having magnitude only is called</li> <li>A. Scalar</li> <li>C. Unit vector</li> <li>798) The vector product of two vectors is also called</li> <li>A. Scalar product</li> <li>C. Point product</li> <li>799) Projection of vector A in the direction of x-axis is rep</li> <li>A. Cos</li> <li>C. Tan</li> <li>800) Scalar product of A.B with angle 180 degrees would p</li> <li>A. A.B</li> <li>C. AB</li> <li>801) Vector sum of two vectors holds the</li> </ul>	B.       Progression         D.       Complex sequence         B.       Rational Numbers (Q)         D.       Real numbers         is called       B.         B.       Imaginary sequence         D.       Complex sequence         B.       abcosΘ         D.       ab         B.       Resultant         D.       Temperature         B.       Dot product         D.       Cross product         resented by the angle of       B.         Sin       D.         Both A and B       Doroduce results equal to         B.       (-AB)         D.       B	B       C       A       B       C       D       A       B       B       B       B       B       B       B       B       B       B
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. absinΘ</li> <li>C. abtanΘ</li> <li>797) A vector having magnitude only is called</li> <li>A. Scalar</li> <li>C. Unit vector</li> <li>798) The vector product of two vectors is also called</li> <li>A. Scalar product</li> <li>C. Point product</li> <li>799) Projection of vector A in the direction of x-axis is rep</li> <li>A. Cos</li> <li>C. Tan</li> <li>800) Scalar product of A.B with angle 180 degrees would p</li> <li>A. A.B</li> <li>C. AB</li> <li>801) Vector sum of two vectors holds the</li> <li>A. Multiplicative property.</li> </ul>	<ul> <li>B. Progression</li> <li>D. Complex sequence</li> <li>B. Rational Numbers (Q)</li> <li>D. Real numbers</li> <li>is called</li> <li>B. Imaginary sequence</li> <li>D. Complex sequence</li> <li>B. abcos <ul> <li>B. abcos </li> <li>D. ab</li> </ul> </li> <li>B. Resultant <ul> <li>D. Temperature</li> </ul> </li> <li>B. Dot product <ul> <li>D. Cross product</li> <li>D. Cross product</li> <li>D. Cross product</li> <li>D. Both A and B</li> <li>produce results equal to</li> <li>B. (-AB)</li> <li>D. B</li> </ul> </li> </ul>	B C C A B C C C C C C C C C C C C C C C
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. absinO</li> <li>C. abtanO</li> <li>797) A vector having magnitude only is called</li> <li>A. Scalar</li> <li>C. Unit vector</li> <li>798) The vector product of two vectors is also called</li> <li>A. Scalar product</li> <li>C. Point product</li> <li>799) Projection of vector A in the direction of x-axis is rep</li> <li>A. Cos</li> <li>C. Tan</li> <li>800) Scalar product of A.B with angle 180 degrees would p</li> <li>A. A.B</li> <li>C. AB</li> <li>801) Vector sum of two vectors holds the</li> <li>A. Multiplicative property</li> <li>C. Assimation accounting the property</li> </ul>	<ul> <li>B. Progression</li> <li>D. Complex sequence</li> <li>B. Rational Numbers (Q)</li> <li>D. Real numbers</li> <li>is called</li> <li>B. Imaginary sequence</li> <li>D. Complex sequence</li> <li>B. abcosO</li> <li>D. ab</li> <li>B. Resultant</li> <li>D. Temperature</li> <li>B. Dot product</li> <li>D. Cross product</li> <li>D. Cross product</li> <li>P. Both A and B</li> <li>produce results equal to</li> <li>B. (-AB)</li> <li>D. B</li> </ul>	B C C A B C C C C C C C C C C C C C C C
<ul> <li>793) A sequence is also known as</li> <li>A. Real sequence</li> <li>C. Arrangement</li> <li>794) A sequence is a function whose domain is set of</li> <li>A. Integers (Z)</li> <li>C. Natural numbers</li> <li>795) A sequence whose range is R i.e. set of real numbers,</li> <li>A. Real sequence</li> <li>C. Natural sequence</li> <li>C. Natural sequence</li> <li>796) In vector mechanics, <b>a.b</b> =</li> <li>A. absinO</li> <li>C. abtanO</li> <li>797) A vector having magnitude only is called</li> <li>A. Scalar</li> <li>C. Unit vector</li> <li>798) The vector product of two vectors is also called</li> <li>A. Scalar product</li> <li>C. Point product</li> <li>799) Projection of vector A in the direction of x-axis is rep</li> <li>A. Cos</li> <li>C. Tan</li> <li>800) Scalar product of A.B with angle 180 degrees would p</li> <li>A. A.B</li> <li>C. AB</li> <li>801) Vector sum of two vectors holds the</li> <li>A. Multiplicative property</li> <li>800) A sequence of two property</li> <li>801 Vector sum of two vectors holds the</li> </ul>	<ul> <li>B. Progression</li> <li>D. Complex sequence</li> <li>B. Rational Numbers (Q)</li> <li>D. Real numbers</li> <li>is called</li> <li>B. Imaginary sequence</li> <li>D. Complex sequence</li> <li>B. abcos <ul> <li>Ab</li> </ul> </li> <li>B. Resultant</li> <li>D. Temperature</li> </ul> <li>B. Dot product <ul> <li>D. Cross product</li> <li>D. Cross product</li> <li>D. Cross product</li> <li>D. Both A and B</li> </ul> </li> <li>b. Bistributive property</li> <li>D. B</li>	B       C       A       B       C       D       A       D       B       D       D       D       D       D       D

Α	Scalar	Β.	Resultant	
C.	Unit vector	D.	Null vector	

#### Misc. questions

				A	nswer Key
803)	By passing an electric discharge through a gas at low pr	ressi	are, the electron was discovered by		
	A. Dirac	B.	Chaadwick		С
	C. J. J. Thomson	D.	Bohr		
804)	Structure of nucleus was first explained by				
ĺ ĺ	A. Bohr	B.	Rutherford		В
	C. Einstein	D.	Schrodinger		
805)	A particle having the mass of an electron and the charge	e of	a proton is called a		
ĺ ĺ	A. photon	B.	proton		D
	C. neutron	D.	positron		
806)	The chemical behavior of an atom is determined by		1		
Í	A. Mass number	B.	Atomic weight		С
	C. Charge number	D.	Molecular weight		
807)	Mass defect per nucleon is related to				
ĺ ĺ	A. Binding energy	B.	Packing fraction		А
	C. Changer number	D.	Molecular weight		
808)	The idea of laser device was first introduced by C.H. Tow	mes	and Authers Schowian in		
000)	A. 1858	B.	1958		С
	C 1998	D.	2008		-
809)	Laser beam can be used to generate three dimensional	ima	ze of object in a process called		
0077	A Holography	B	Reflection		А
	C Transmission microscopy	<u> </u>	Total internal reflection		
810)	An atom can reside in normal excited state for	P.			
010)	A 10-8 second	B	0.1 second		А
	C = 1  sec	<u> </u>	100 sec		
811)	The transitions of inner shell electrons in heavy atoms		rise to the emission of		
011)	A Gamma rays		laser		C
	C Y rays	<u> </u>	Cosmic rays		C
812)	C. A Tays For the production of x rays, the target metal is hombard		Cosine rays		D
012)	A Protons	R	neutrons		D
	C Alpha rays	<u>р</u> .	electrons		
813)	The $x_r$ rays diffraction with crystal with first studied by	μ.	ciccuons		
015)	A Bragg	R	Dirac		Δ
	C Milikan	р. Б	Bohr		Π
814)	C. Minkan The characteristics y rays appear as	P.	Doll		
014)	A Band spectrum	P	Line spectrum on continuous spectrum		в
	C. Continuous spectrum	<u>р</u> .	All of those		D
815)	C. Continuous spectrum	р.	All of these		
015)	A Lymon radius	Þ	Dohr radius		P
	C. Direa redius	<u>р</u> .	Duantum number		D
91()	C. Dirac radius	<u>р</u> .			
810)	Balmer series is obtained when the transitions in hydrogen a	uom	Constant archite		D
	A. FITST OTDIT	В.	Second orbit		D
017	U. [1 mrd orbit	<u>p</u> .	Prourin Orbit		•
81/)	De Broglie suggest for a length of Bohr's orbit in relation	tod	eBroglie Wavelength is that		А
	A. It should be equal to integral multiple of wavelength	В.	It should be less than wavelength		
010	C. It should be greater than wavelength	D.	It has no link with wavelength.		
818)	mvr is the expression for				D
	A. Liner momentum	В.	Angular acceleration		D
	C. Liner velocity	D.	Angular momentum		
819)	Electromagnetic rays which lies above the x-rays region	n are	e called		

A. 1	Infra red rays	B.	Ultra violet rays	С
C. (	Gamma rays	D.	Alpha rays	
820) Whi	ich series is in visible region of EM radiation spectrum			
A. 1	Lyman	Β.	Balmer	В
C. 1	Paschen	D.	Brackett	
821) Unc	ertainty principle states that			С
А.	$\Delta \mathbf{x}  .  \Delta E \approx h$	Β.	$\Delta \mathrm{E}$ . $\Delta P pprox h$	
C.	$\Delta x \cdot \Delta P \approx h$	D.	None of these	
822) Th	ne condition hf > $2m_0c^2$ refers to the process of			В
A. (	Compton effect	B.	Pair production	
C. 1	Photoelectric effect	D.	Principle of solar cell working	
823) In	Compton effect the shift in wavelength refers to the wa	ive	length of	
	electrons	B	Protons	D
C.	Atoms	D.	Photons	
824) The	relation between work function and maximum energy	of	nhotoelectrons was discovered by	
	Bohr	R	Max Planck	С
	Finstein	D. D	None of these	
825) The	nature of radiation emitted by a body depends upon its	μ.	None of these	С
(225) Me	Mass	B.	Volume	
C	Temperature	D.	No. of atoms	
826) Th	he maximum number of the photoelectrons released in	p. nha	nto: of atoms	
	Frequency of incident light	B	Intensity of incident light	C
	Wavelength of incident light	D. D	None of these	
827) In	nhotoelectric emission the energy of emitted electron	ic		
	Lass then that of photon	13 D	Creater than that of photon	А
A. I	Less than that of photon	В.	All of these	
020) (C.I.	Equal to that of photon	<u>р</u> .		
828) If th	te energy of photon is 10 eV and work function is 5 eV, 1	tne	n the a value of stopping potential will be	
A.	10V 15V	В.	20V	
U.		Ρ.	57	
829) In	The amount of photoelectric current depends upon	Ь	Wanden of incident above	
A.	Energy of incident photons	В.	Wavelength of incident photons	
U. 1	Frequency of incident photons	р.	Intensity of incident photons	C
830) 10	Velocity	ien Þ	ts of energy and	
A.	Momentum	D. D	I lile Mass of portials	_
021) Th	Mollenum	υ.	mass of particle	D
	Interference	D	Delerization	
A.	Momentum	D. D	Foldrization	_
022) The		μ.		
032) <u>i ne</u>	Deflected by electric field	Ь	Deflected by meanatic field	C
A.	Diffuented by electric field	В.	Deflected by magnetic field	
	Diffracted by crystals	<u>р.</u>	None of these	
855) I ne	shape of intensity vs wavelength curve of radiation en		ted from a not body depends upon	
A.	Its temperature	В.	Its volume	A
C. 1	Its mass	ρ.	None of these	
834) Acco	ording to special theory of relativity all laws of physics	are	same in all	
A.	Non inertial frames	В.	Inertial frames	В
C. 1	Both A and B options are correct	р.	Both A and B options are wrong	
835) W	hich one of the following physical quantities change wi	ith	relativistic speed	
A. 1	Length	В.	Mass	D
C. [	Time	D.	All of these	
836) Ma	athematical formulation for electromagnetic waves is g	ive	n the name	
A. 1	Lagrange equations	Β.	Hamiltion's equations	C
C. 1	Maxwell's equations	D.	Jacobi's equation	
837) En	nitter base junction is always			
A. 1	Forward biased	B.	Reverse biased	1

	C.	At ground potential	D.	None of these	А
838)	The	a forward current through a semi-conductor diode circu	it i	s due to	
050)	A Electrons only				
	$\frac{\Lambda}{C}$	Holes only	D. D	Minority carriers	Б
839)	C. In c	emi conductor diode the width of depletion region is increased		d when the PN junction is	
037)	Δ	Forward Biased	R	Reverse Biased	в
	<u>л</u> . С	At ground potential	p. h	None of these	D
840)	C.	At ground potential	р. топ		
840)		Moiority corriers	зеп Б	Minority corriers	P
	A.	Majority carriers	D. D	Ninolity carriers	D
941)	U. T	neutral charges	μ.		
041)		the crystal of germanium or sincon in its pure form at roo	om b	Conductor	C
	A.		D. D		C
942)	С.	Semi conductor	Ρ.	Quantum dot	
842)	A	n n-type substance is	L	h	
	A.	Electrically neutral	В.	Negatively charged	А
	C.	Positively charged	D.	None of these	
843)	The	e temp at which a ferromagnetic disappear, the substand	ces	becomes paramagnetic is known as	
	A.	Critical temperature	Β.	Curie temperature	В
	C.	Absolute temperature	D.	All of these	
844)	Sc	oft magnetic material are used for making			
	A.	Permanent magnets	Β.	Electromagnets	В
	C.	Solenoids	D.	None of these	
845)	Ga	auss's Law can only be applied to			
· ·	A.	Surface of any shape	B.	Only open surfaces	С
	C.	Closed surface	D.	None of these	
846)	Wh	en dielectric material is placed in an electric field it			
0.0)	A	Conducts electricity	R	Becomes polarized	В
	$\frac{1}{C}$	melts	D.	Undergoes electrolysis	2
847)	С.	he value of $\epsilon$ for various dielectrics is always	μ.		
047)		Constant los and a los dielectrics is always.	Ь	T	Δ
	A.	Greater than one	В.	Less than one	Π
0.400	C.	Equal to one	D.	Always negative	
848)	W	hen the temperature of a conductor is raised, its resista	nc	e	D
	A.	Decreases	В.	Increases	В
	C.	Remains the same	D.	Becomes zero	
849)	T	he number of Lagrange equations needed to solve a p	orol	blem involving double pendulum is	
	A.	one	Β.	two	В
	C.	three	D.	four	
850)		If $F(r) < 0$ , it means that the			
	A.	The central force is negative	B.	The central force is attractive	А
	C.	Both are correct	D.	Both are wrong	
851)	If	the force acting on a body is doubled then acceleration	on	hecomes	
	Δ	Half	R	doubled	В
	<u>л</u> . С	Pamaing same	р. Г	constant	2
852)	C.	1 watt hour is aqual to (in ioula)	υ.	constant	
832)		1 wait-nour is equal to (in joule)	6	2.00	C
	A.	36	В.	360	C
	С.	3600	D.	36000	
853)	A	radioactive element has a half life of 5000 years, its f	ull	lite will be	-
	A.	10000 years	Β.	2500 years	D
	C.	5000 years	D.	None of these	
854)	A	n observer moves in a rocket in the direction parallel	(or	ne meter long). The observed length of the meter stick	
	is	*			
	A	Greater than one meter	B.	Less than one meter	В
	C	Equal to one meter	<u>D</u> .	None of these	
855)		An array of points in space is called	<u> </u>		
0000)	1 -	in anay or points in space is cance			

A. crystal	B. Unit cell	С
C. lattice	D. Brillion zone	
856) The vectors in Hilbert space are orthogonal if the int	ner product of these vectors is	
A. Greater than 1	B. negative	C
C. zero	D. Vectors in Hilbert space cannot be orghogonal	
857) A body is moving in a circle at a constant speed. Whi	ch of the following is true about it	
A. Force is along the tangent	B. There is no force acting on it	D
C. There is no acceleration	D. Force is directed towards center	
858) Protons are		
A. Bosons	B. Fermions	А
C. Anti particles	D. None of these	
⁸⁵⁹ The equipotential surfaces associated with a char	ged point particles are:	
A. Concentric spheres centered at the charge	B. Plane surface perpendicular to the radius	A
C. Horizontal planes	D. None of these	
860) The electrical force of attraction between two oppos	itely charges is directly proportional to the magnitude of	
A. Addition of charges	B. Difference of charges	D
C. Ratio of charges	D. Product of charges	
861) The unit "henry" is equivalent to		
A. Volt.second/ampere	B. volt	А
C. ampere	D. Ohm.meter	
862) If an electron has zero orbital angular momentum	, what is true about it?	
A. It is at rest in atom	B. Its orbital and spin angular momenta cancel each other	С
C. Its orbit around nucleus is spherically symmetric	D. All options are correct	
863) The amplitude of an alternating voltage by an AC gen	herator is 30 V and its frequency is 100 Hz. The value of	
voltage at 3 millisecond is		А
A. 1 V	B. 2 V	
C. 3 V	D. 4 V	
864) The efficiency of Carnot engine operating between 0 °C	C and 100 °C is	
A. Infinite	B. 10%	D
C. 100%	D. None of these	
865) According to the theory of relativity		
A. Moving class run slower	B. Moving class run faster	А
C. Velocity of light is measured relative to ether	D. None of these	
866) The Stern-Gerlach experiment makes use of		
A. Strong but uniform magnetic field	B. Weak but uniform magnetic field	С
C. Strong but non uniform magnetic field	D. Weak but non uniform magnetic field	1
867) The Fermi energy of a metal depends primarily o	n:	
A. Temperature of metal	B. Number density of conduction electrons in metal	В
C. Mass density of metal	D. None of these	-
		1

		Answer
		Key
Unit of angular momentum is		
A. kg.m/s	B. kg.m ² /s ²	D
C. $kgm/s^2$	D. $kgm^2/s$	
The rate of change of angular momentum of a body	<i>i</i> is equal to	
A. Impulsive force	B. Applied force	D
C. Moment of inertia	D. The applied torque	
Forces acting at different points but all in one plane	e, they are called	
A. concurrent forces	B. coplanar forces	В
C. equivalent forces	D. none	
	Unit of angular momentum is A. kg.m/s C. kgm/s ² The rate of change of angular momentum of a body A. Impulsive force C. Moment of inertia Forces acting at different points but all in one plane A. concurrent forces C. equivalent forces	Unit of angular momentum is         A. kg.m/s       B. kg.m²/s²         C. kgm/s²       D. kgm²/s         The rate of change of angular momentum of a body is equal to         A. Impulsive force       B. Applied force         C. Moment of inertia       D. The applied torque         Forces acting at different points but all in one plane, they are called         A. concurrent forces       B. coplanar forces         C. equivalent forces       D. none

871)	There is no SI base unit for area because:			
	A. an area has no thickness	B. we live in a three (not a two) dimensional world		
	it is impossible to express square feet in terms of		D	
	C. meters	D. area can be expressed in terms of square meters		
872)	A material which magnetizes to a small extent in the	opposite direction to the applied external magnetic field		
	is:			
			٨	
	A. diamagnetic	B. paramagnetic	A	
072)	C. ferromagnetic	p. ferrimagnetic		
873)	Soft ferromagnetic materials have value	ue of retentivity		
	A. large	B. small	В	
	C. negative	D. None of these		
874)	The SI standard of time is based on:			
	A. the frequency of light emitted by Kr86	B. the yearly revolution of the earth about the sun	D	
	C. a precision pendulum clock	D. none of these		
875)	Poisson brackets do not obey			
	A commutative law	B distributive law	А	
	C inverse square law	D conservation of energy law		
876)	In electronic laboratory an LCR meter measures	p. conservation of energy far		
,	In electronic hootmory an Dert meter measures			
	A. Inductance	B. Capacitance	D	
	C. Resistance	D. all of these		
877)	Iron, nickel and cobalt are examples of which type of	f materials		
		F 1	D	
	A. paramagnetic	B. diamagnetic	D	
	C. non magnetic	P. ferromagnetic		
878)	A body is moving in a circle at a constant speed. Wh	ich of the following is true about it		
	A. There is no acceleration	B. There is no force	D	
	C. Force is along tangent	D. Force is directed towards the center		
879)	In which thermodynamic process the pressure on the	system remains constant		
	5 1 1	,		
	A. isothermal	B. adiabatic	В	
	C. isobaric	D. isochoric		
880)	The process in which no heat enters or leaves the sys	tem is called	В	
	A isobaric	B adiabatic		
		D none of these		
881)	1 watt-hour is equal to	p. mone of these		
001)	i watt-nour is equal to			
	A. 36 J	B. 360 J	С	
	C. 3600 J	D. 36000 J		
882)	Einstein got Nobel prize for the explanation of			
	A. photoelectric effect	B. special relativity	А	
	C. laser principle	D. specific heat of solids		
883)	One amu is equal to	1 1 4		
	*			

C. [93.1 MeV       [b.].031 MeV         884)       The Balmer series of Hydrogen spectrum is in the       D         A. Kray region       B       [UV region]       D         Region       D. visible region       D         885)       The electric intensity outside two oppositely charged plates is       A         Region       D. pane of these       A         8860       The energy of an electron in an orbit around the nucleus is       A         A. positive       D. pane of these       B         C. [rero       D. pone of these       B         Region       D. [note of these       B         Region       D. [note of these       B         Resettion       D. [note of these       B         Restright       D. [note of these       D		A. 931.48 MeV	B.	9.31 MeV	А
884)       The Balmer series of Hydrogen spectrum is in the       D         A: ray region       B: [UV region       D         C: [IR region       D: visible region       D         885)       The electric intensity outside two oppositely charged plates is       A         A: [zero       D: none of these       A         886)       The energy of an electron in an orbit around the nucleus is       A         A: [positive       D: none of these       B         887)       The induction of emf in one coil due to charge in voltage in a nearby coil is an example of       B         A: [longitudino of emf in one coil due to charge in voltage in a nearby coil is an example of       B       B         A: [Roentgen       B: [Faraday       A         C: [Maxwell       D: [none of these       B         889)       The x rays were discovered by       A         A: [Roentgen       B: [Faraday       A         C: [Maxwell       D: [Entertein]       D         B: [restangular       D       D         C: dilptical       D: [circular       D         B: [six processes       D: [en processes]       A         A: [our processes]       D: [en processes]       A         C: [diptical processes]       D: [none of these]       <		C. 93.1 MeV	D.	0.931 MeV	
A       k ray region       B       UV region       D         C       [R region       D       visible region       A         885)       The electric intensity outside two oppositely charged plates is       A       A         886)       The energy of an electron in an orbit around the nucleus is       A       A         886)       The energy of an electron in an orbit around the nucleus is       B       B         887)       The induction of enf in one coil due to change in voltage in a nearby coil is an example of       A         A       self-induction       B       B         C. Jampere's law       D. hone of these       B         888)       The xays were discovered by       A         A. Self-induction       B. Instrain       B         888)       The magnetic lines of force around a current carrying conducting wire are       A         A. Istraight       B       Decingular       D         C. Igingtricic waves have       A       A       C         A. Iongrindinal nature       B. only one wavelength       C       C         C. Sume speed in vacuum       D. mass       A       A         892)       [Le., L_1_2 =       A       A       C         A. [AcL_x       B. [in	884)	The Balmer series of Hydrogen spectrum is in the			
A. kray region       B. UV region       D         6 IR region       D. visible region       D         885)       The electric intensity outside two oppositely charged plates is       A         A. zero       B. positive       A         A. zero       B. positive       A         A. positive       D. lone of these       A         A. positive       D. lone of these       B         A. positive       D. lone of these       B         C. Jero       D. lone of these       B         887)       The induction of enf in one coil due to change in voltage in a nearby coil is an example of       B         C. ampere's law       D. none of these       B         8883       The x rays were discovered by       A         A. Roenigen       B. Faraday       A         C. Maxwell       D. circular       D         890       The magnetic lines of force around a current carrying conducting wire are       A         A. straight       B. rectangular       D         C. elliptical       D. circular       C         890       Electromagnetic waves have       C         A. four processes       B. [six processes       A         891       Carnot cycle consists of       A					
C. [R region       D. [visible region         885)       The electric intensity outside two oppositely charged plates is         A. Jerro       B. positive         C. pegative       D. loone of these         886)       The energy of an electron in an orbit around the nucleus is         A. positive       B. logative         C. period       B. longative         C. period       B. longative         C. period       B. mutual induction         C. ampere's law       D. none of these         B       The x rays were discovered by         A. Roenigen       D. Einstein         C. Maxwell       D. Einstein         B       C. Harginular         C. Harginular       D. Einstein         B       Only one wavelength         C. same speed in vacuum       D. muss         Carnot cycle consists of       D. muss         B       D. len processes         D. len processes       D. len processes         D. len of these       A.         8901       Carnot cycle consists of         A. four processes       D. len processes         D. len processes       D. len processes         D. lone of these       A         A       B. loloude-sec ⁻²		A. x ray region	B.	UV region	D
885       The electric intensity outside two oppositely charged plates is       A         A   zero       B, positive       A         886       The energy of an electron in an orbit around the nucleus is       A         887       The energy of an electron in an orbit around the nucleus is       A         887       The induction of emf in one coil due to change in voltage in a nearby coil is an example of       B         887       The range of these       B         888       The x rays were discovered by       A         888       The x rays were discovered by       A         A kraight       B   Faraday       A         C. Maxwell       D   Einstein       D         889       The magnetic lines of force around a current carrying conducting wire are       D         A straight       C   entergintic       D       C         C. [amere seed in vacuum       D   mass       C       A         890       Electromagnetic waves have       C       C         6       [ongitudinal nature       B   with processes       A         891       Carou cycle consists of       A       A         7       A low_c       D   none of these       A         892       [L_w L_c] =       A       A		C. IR region	D.	visible region	
A. jero       B. positive       A         8869       The energy of an electron in an orbit around the nucleus is       B. segative       B         8869       The energy of an electron in an orbit around the nucleus is       B       B         8870       The induction of emf in one coil due to change in voltage in a nearby coil is an example of       B         8871       The induction of emf in one coil due to change in voltage in a nearby coil is an example of       B         8883       The x rays were discovered by       B       B         8883       The x rays were discovered by       A       A         8883       The magnetic lines of force around a current carrying conducting wire are       A       A         8890       The magnetic lines of force around a current carrying conducting wire are       D       C         890       Flectromagnetic waves have       C       C       C         A. longitudinal nature       B. only one wavelength       C       A       C         C protecteses       D. jens processes       A       A       A       C         8910       Carnot cycle consists of       C       A       A       A       C         8921       Ltwords       J. and two of angular momentum quantum number (I) is 3, then the number of possible <i>m</i> values is <td>885)</td> <td>The electric intensity outside two oppositely charged</td> <td>pla</td> <td>tes is</td> <td></td>	885)	The electric intensity outside two oppositely charged	pla	tes is	
A. Izero       B. positive       A         C. negative       D. none of these       A         8860       The energy of an electron in an orbit around the nucleus is       B         A. positive       B. Insquive       B         C. zero       D. pone of these       B         8877       The induction of emf in one coil due to change in voltage in a nearby coil is an example of       B         887       The x rays were discovered by       B       B         A. Roentgen       B. Faraday       A         C. Maxwell       D. inone of these       A         R89       The magnetic lines of force around a current carrying conducting wire are       D         A. Isonigutdinial nature       B. only one wavelength       C         C. same speed in vacuum       D. mass       C         890       Carnot cycle consists of       A         A. flour processes       D. kn processes       A         R       A. idu z       B. in the z         R       A. idu z       B. in the z         R       The value of angular momentum quantum number ( <i>t</i> ) is 3, then the number of possible <i>m</i> values is       A         A. idu z       C. Zero       D. in one of these       C         R       A. four processes			1	r	
C       leagative       D. none of these       A         8860       The energy of an electron in an orbit around the nucleus is       A       positive       B         2. Jordination       B. Insegative       B       B       B         8870       The induction of emf in one coil due to change in voltage in a nearby coil is an example of       B       B         8871       The induction of emf in one coil due to change in voltage in a nearby coil is an example of       C       A         8873       The x rays were discovered by       A       Reentgen       A         A. Reentgen       B. Faraday       A       A         C. Maxwell       D. Einstein       D       D         8890       The magnetic lines of force around a current carrying conducting wire are       P       D         A. straight       D. circular       D       D       C         8800       Electromagnetic waves have       C       Six processes       A       C         8911       Carnot cycle consists of       A       Four processes       A       A         8912       [L, L_g] =       A       Intra-       A       C       Zero       P       A         8920       [L, I.tg] =       A       Intra- <td< td=""><td></td><td>A. zero</td><td>B.</td><td>positive</td><td></td></td<>		A. zero	B.	positive	
886       The energy of an electron in an orbit around the nucleus is       B         A. positive       B. longative       B         C. zero       D. lone of these       B         887       The induction of emf in one coil due to change in voltage in a nearby coil is an example of       B         A. self-induction       B. lmutual induction       C         C. lampere's law       D. lone of these       B         8880       The x rays were discovered by       A         A. Roentgen       B. Faraday       A         C. Maxwell       D. Einstein       C         889       The magnetic lines of force around a current carrying conducting wire are       A         A. longitudinal nature       B. only one wavelength       C         C. same speed in vacuum       D. mass       C         8910       Carnot cycle consists of       A         A. fut_r       B. [ht_r, C       Zero         C. Zero       D. [1       B         892       It he value of angular momentum quantum number (l) is 3, then the number of possible <i>m</i> values is       A         A. [JA_r_C       D. [none of these       C         893       If the value of angular momentum quantum number (l) is 3, then the number of possible <i>m</i> values is       B         A.		C. negative	D.	none of these	A
A. positive       B. negative       B         (c) zero       D. none of these       D. none of these         887)       The induction of emf in one coil due to change in voltage in a nearby coil is an example of       B         (c) ampere's law       D. pone of these       B         888)       The x rays were discovered by       A         (c) ampere's law       D. pone of these       A         (c) Maxwell       D. Einstein       A         (c) Maxwell       D. Einstein       A         (c) elliptical       D. circular       D         (c) elliptical       D. (circular       C         (c) same speed in vacuum       D. (mass       C         (c) elipt processes       D. (en processes)       A         (c) elipt processes       D. (none of these       B         (c) g       D. (none of these       C         (c) elipt processes       D. (none of these       C         (c) elipt eliptical momentum quantum number (I) is 3, then the number of possible m values is       A         (c) g       D. (no	886)	The energy of an electron in an orbit around the nucle	eus	is	
C. $\mu$ one of these         887       The induction of emf in one coil due to change in voltage in a nearby coil is an example of         A.       self-induction       B.         C.       any of the empty coil is an example of       B         B       D.       pone of these       B         S889       The x rays were discovered by       A       A         A.       Roentgen       B.       Faraday       A         C.       Maxwell       D.       Einstein       D         889       The magnetic lines of force around a current carrying conducting wire are       A       A         890       The cangular       D       C       C         C. same speed in vacuum       D.       mass       C       C         891       Carnot cycle consists of       A       A       A         892       I.La, Ly =       A       Int.,       A         893       If the value of angular momentum quantum number (I) is 3, then the number of possible m values is       A         894       I.fut.,       B.       int.,       A         C. Zero       D.       p. none of these       C         894       The SI unit of Planck's constant       A       C		A. positive	B.	negative	В
887)       The induction of emf in one coil due to change in voltage in a nearby coil is an example of       B         A. self-induction       B. mutual induction       B         6880       The x rays were discovered by       A         8880       The x rays were discovered by       A         6890       The magnetic lines of force around a current carrying conducting wire are       A         7.       A straight       B. [rectangular       D         C. elliptical       D. [circular       D       C         890       Electromagnetic waves have       C       C         A. [nogitudinal nature       B. [only one wavelength       C       C         C. same speed in vacuum       D. mass       A       A         8910       Carnot cycle consists of       A       A         8921       [La, L_1] =       A       AL_2       A         A $BL_2$ B. $ML_2$ A       A         8923       If the value of angular momentum quantum number (I) is 3, then the number of possible m values is       A         A. [Joule-sec ''       D. [none of these       B         8934       The S1 unit of Planck's constant       C         A. [Joule-sec ''       D. [none of these       C		C. zero	D.	none of these	
A. self-induction       B. mutual induction       B         A. self-induction       B. mutual induction       B         C. ampere's law       D. none of these       A         8880       The x rays were discovered by       A         A. Roentgen       B. Faraday       A         C. Maxwell       D. Einstein       A         8890       The magnetic lines of force around a current carrying conducting wire are       A         A. straight       B. rectangular       D         C. elliptical       D. circular       B         890       Electromagnetic waves have       C         A. four processes       B. six processes       A         C. same speed in vacuum       D. mass       A         8910       Carnot cycle consists of       A         A. four processes       B. six processes       A         C. zero       D. len processes       A         892)       [La, L_J] =       A       A         A. $\frac{A_1A_2}{Bule-sec^{-1}}$ D. none of these       B         894)       The SI unit of Planck's constant       A       C         A. Joule-sec^{-1}       B. Joule-sec^{-2}       C       C         C. joule-sec -1       D. none of these	887)	The induction of emf in one coil due to change in volt	tag	e in a nearby coil is an example of	
A.       self-induction       B.       mutual induction       B         Rest       The x rays were discovered by       A.       Reentgen       A         A.       Regentingen       B.       Faraday       A         C.       Maxwell       D.       Einstein       A         8890       The magnetic lines of force around a current carrying conducting wire are       D       D         A.       straight       D.       circular       D         890       Electromagnetic waves have       C       C       A         A.       longitudinal nature       B.       only one wavelength       C       C         C.       sing speed in vacuum       D.       mass       A       A         891)       Carnot cycle consists of       A       A       A         892       (La, Ly) =       A       A       A         893       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       A         A.       Joule-sec ⁻¹ D.       none of these       B         894       The SI unit of Planck's constant       A       C       C         A.       Joule-sec ⁻¹ D.       none of these       C<		6	U		
C.       ampere's law       D. none of these         888)       The x rays were discovered by       A         A.       Roentgen       B.         C.       Maxwell       D.         Base       The magnetic lines of force around a current carrying conducting wire are       A         A.       straight       B.       rectangular       D         C.       elliptical       D.       circular       D         890)       Electromagnetic waves have       C       C       A         A.       longitudinal nature       B.       only one wavelength       C         C.       same speed in vacuum       D.       mass       A         891)       Carnot cycle consists of       Nature processes       A         892)       [L_x, L_y] =       A       hL_x       A         892       [L_x, L_y] =       A       hL_y       A         893       If the value of angular momentum quantum number ( <i>I</i> ) is 3, then the number of possible <i>m</i> values is       A         894       The SI unit of Planck's constant       A       B         894       The SI unit of Planck's constant       A       C         895       Using Michelson Interferometer we cannot accurately measure the		A. self-induction	B.	mutual induction	В
S88       The x rays were discovered by       A         A. Roentgen       B. Faraday       A         C. Maxwell       D. Einstein       A         889       The magnetic lines of force around a current carrying conducting wire are       D         A. straight       B. rectangular       D         C. elliptical       D. circular       D         890       Electromagnetic waves have       C         A. longitudinal nature       B. only one wavelength       C         C. same speed in vacuum       D. mass       C         891       Carnot cycle consists of       A         A. <i>inL_x</i> B. <i>inL_y</i> A         A. <i>inL_x</i> B. <i>inL_y</i> A         A. <i>inL_x</i> B. <i>inL_y</i> A         R92)       [La, Ly] =       A       A         A. 3       B. <i>inL_y</i> A         A. 3       B. <i>inL_y</i> B         A. 3       B. <i>inL_y</i> B         S93       If the value of angular momentum quantum number ( <i>l</i> ) is 3, then the number of possible <i>m</i> values is       A         A. 3       D. none of these       B         894       The SI unit of Planck's constant       C         A. Joule-sec ⁻¹		C. ampere's law	D.	none of these	
A. Roentgen       B. Faraday       A         A. Roentgen       D. Einstein       A         C. Maxwell       D. Einstein       A         889       The magnetic lines of force around a current carrying conducting wire are       D         A. straight       B. rectangular       D         C. elliptical       D. circular       D         890       Electromagnetic waves have       C         A. longitudinal nature       B. only one wavelength       C         C. same speed in vacuum       D. mass       A         891)       Carnot cycle consists of       A         A. four processes       B. six processes       A         892)       IL _x , L _y ] =       A         A. $\frac{i \hbar L_x}{C}$ C $\frac{i \hbar L_y}{P}$ A. $\frac{i \hbar L_z}{C}$ D. pone of these       B         893)       If the value of angular momentum quantum number (I) is 3, then the number of possible m values is       A         A. $\frac{3}{C}$ B. $\frac{7}{D}$ D. pone of these       B         894)       The SI unit of Planck's constant       A       C         A. Joule-sec ⁻¹ B. Joule-sec ⁻² C       C         G. Joule-sec ⁻¹ B. Sodium Light       C <tr< td=""><td>888)</td><td>The x rays were discovered by</td><td></td><td></td><td></td></tr<>	888)	The x rays were discovered by			
A.       Roentgen       B.       Faraday       A         C.       Maxwell       D.       Einstein       A         889)       The magnetic lines of force around a current carrying conducting wire are       D       D         889)       C.       elliptical       D.       circular       D         890)       Electromagnetic waves have       C       C       Same speed in vacuum       D.         891)       Carnot cycle consists of       A.       four processes       B.       six processes       A         892)       Last L _x L _y ] =       A. $hL_x$ B. $hL_x$ A         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       A       A         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       B         894)       The SI unit of Planck's constant       A       Joule-sec ⁻¹ C         A.       Laser       D. none of these       C       C         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C       C         C.       Joule-sec ⁻¹ B.       Sodium Light       C       C					
C. Maxwell       D. Einstein         R890       The magnetic lines of force around a current carrying conducting wire are       D         A. straight       B. rectangular       D         C. elliptical       D. circular       D         8900       Electromagnetic waves have       C         A. longitudinal nature       D. only one wavelength       C         C. same speed in vacuum       D. mass       C         8911       Carnot cycle consists of       A.       isix processes       D. en processes         C. eight processes       D. thr processes       D. thr processes       A         8920       [Las, Ly] =       A       ihL _y A         8931       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       A         8932       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       B         8941       The SI unit of Planck's constant       A       C       C         8951       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C       C         8953       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C       C         8954       Using Michelson Interferometer we cannot accurately measu		A. Roentgen	B.	Faraday	А
889       The magnetic lines of force around a current carrying conducting wire are       D         A. straight       B. rectangular       D         C. [elliptical       D. circular         890       Electromagnetic waves have       C         A. longitudinal nature       B. only one wavelength       C         C. same speed in vacuum       D. mass       C         891       Carnot cycle consists of       A         A. four processes       B. six processes       A         C. [eight processes       D. ten processes       A         C. Zero       D. 1       A         893       If the value of angular momentum quantum number ( <i>I</i> ) is 3, then the number of possible <i>m</i> values is       A         A. $3$ B       7       B         A. $3$ C. 9       D. none of these       B         894)       The SI unit of Planck's constant       C       C         A. Jacter       B. Joule-sec $^{-2}$ C       C         Vising Michelson Interferometer we cannot accurately measure the wavelength of:       C       C         A. Laser       B. Sodium Light       C       C         A. Laser       B. Sodium Light       D. none of these       C         890)       Using		C. Maxwell	D.	Einstein	
A. straight       B. rectangular       D         A. straight       C. elliptical       D. circular         890       Electromagnetic waves have       C         A. longitudinal nature       B. only one wavelength       C. same speed in vacuum         C. same speed in vacuum       D. mass       A         891)       Carnot cycle consists of       A         A. four processes       D. ten processes       A         C. eight processes       D. ten processes       A         892)       [La, Ly] =       A         A. $ihL_x$ B. $ihL_y$ A         C. Zero       D. 1       B         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       A         A. $ihL_z$ B. $[nne of these]       B         894)       The SI unit of Planck's constant       C         A. Joule-sec -1       B. Joule-sec -2       C         C. Joule-sec -1       B. Joule-sec -2       C         C. Joule-sec -1       B. Sodium Light       C         A. Laser       B. Sodium Light       C         C. white light       D. none of these       C         895)       Using Michelson Interferometer we cannot accurately measu$	889)	The magnetic lines of force around a current carrying	co	nducting wire are	
A. Istraight       B. rectangular       D         C. elliptical       D. circular       C         890)       Electromagnetic waves have       C         A. longitudinal nature       B. only one wavelength       C         C. same speed in vacuum       D. mass       C         891)       Carnot cycle consists of       A.         A. four processes       B. six processes       A.         C. eight processes       D. ten processes       A         892)       [Lx, Ly] =       A.         A. intx       B. inty       A         C. Zero       D. 1       B         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       A         A. joule-sec ⁻¹ B. joule-sec ⁻² C         C. Joule-sec ⁻¹ B. joule-sec ⁻² C         C. Joule-sec ⁻¹ B. joule-sec ⁻² C         C. joule-sec ⁻¹ B. joule-sec ⁻² C         Vusing Michelson Interferometer we cannot accurately measure the wavelength of:       A         A. Laser       B. Sodium Light       C         C. white light       D. none of these       C				-	
C.       elliptical       p. circular         890       Electromagnetic waves have       C         A.       longitudinal nature       B.       only one wavelength         C.       same speed in vacuum       p.       mass         891)       Carnot cycle consists of       A         A.       four processes       B.       six processes         C.       eight processes       p. ten processes       A         892)       [L_x, L_y] =       A $hL_y$ A         A. $hL_x$ B. $hL_y$ A         892)       [L_x, L_y] =       A $hL_y$ A         A. $hL_x$ B. $hL_y$ A         893)       If the value of angular momentum quantum number ( <i>i</i> ) is 3, then the number of possible <i>m</i> values is       A         A.       3       7       B       B         894)       The SI unit of Planck's constant       A       Joule-sec ⁻¹ C         A.       Joule-sec ⁻¹ B.       Joule-sec ⁻² C         C.       Joule-sec ⁻¹ B.       Joule-sec ⁻² C         Voing Michelson Interferometer we cannot accurately measure the wavelength of:		A. straight	B.	rectangular	D
890)       Electromagnetic waves have       C         A.       longitudinal nature       B.       only one wavelength         C.       same speed in vacuum       D.       mass         891)       Carnot cycle consists of       A       A         A.       four processes       B.       six processes       A         C.       eight processes       D.       ten processes       A         892)       [Lx, Ly] =       A $hL_x$ B. $hL_y$ A         A. $hL_x$ B. $hL_y$ A       A         893)       If the value of angular momentum quantum number ( <i>l</i> ) is 3, then the number of possible <i>m</i> values is       A         A.       3       7       B       B         894)       The SI unit of Planck's constant       A       B         894)       The SI unit of Planck's constant       C       C         A.       Joule-sec ⁻¹ B.       Joule-sec ⁻² C         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C       C         896)       Flow through any closed surface is equal to the charee enclosed divided by       C       C		C. elliptical	D.	circular	
A.Iongitudinal natureB.only one wavelengthC.same speed in vacuumD.mass891)Carnot cycle consists ofAA.four processesB.six processesC.eight processesD.ten processes892) $[L_x, L_y] =$ AA. $ihL_x$ B. $ihL_y$ C.ZeroD.1893)If the value of angular momentum quantum number ( <i>I</i> ) is 3, then the number of possible <i>m</i> values isAA.37B.C.9D.none of these894)The SI unit of Planck's constantBA.Joule-sec -1B.A.Joule-sec -2D.C.Joule-secD.Using Michelson Interferometer we cannot accurately measure the wavelength of:CA.LaserB.Sodium LightD.none of these896)Fluw through any closed surface is equal to the charge enclosed divided by	890)	Electromagnetic waves have			С
A.       longitudinal nature       B.       only one wavelength         C.       same speed in vacuum       D.       mass         891)       Carnot cycle consists of       A         A.       four processes       B.       six processes         C.       eight processes       D. ten processes       A         892)       [L_x, Ly] =       A $\hbar L_x$ A $\overline{C}$ Zero       D.       1       A         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       A         A. $\frac{3}{2}$ D.       none of these       B         894)       The SI unit of Planck's constant       B       Joule-sec -1       C         A.       Joule-sec -1       B.       Joule-sec -2       C         C.       Joule-sec -1       B.       Joule-sec -2       C         R95)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       A       C         R95)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C       C         R96)       Flux through any closed surface is equal to the charge enclosed divided by       C       C			1	r	
C.same speed in vacuumD.mass891)Carnot cycle consists ofAA.four processesB.six processesC.eight processesD.ten processes892) $[L_x, L_y] =$ AA. $\hbar L_z$ B. $\hbar L_y$ C.ZeroD.1893)If the value of angular momentum quantum number (l) is 3, then the number of possible m values isA893)A.37C.9D.none of these894)The SI unit of Planck's constantBA.Joule-sec -1B.Joule-sec -2C.Joule-secD.none of these895)Using Michelson Interferometer we cannot accurately measure the wavelength of:CC.white lightD.none of these896)Ehrst through any closed surface is equal to the charge enclosed divided byC		A. longitudinal nature	Β.	only one wavelength	
891)       Carnot cycle consists of       A         A.       four processes       B. six processes       A         C.       eight processes       D. ten processes       A         892) $[L_x, L_y] =$ A $hL_x$ A         A. $hL_z$ B. $hL_y$ A         C.       Zero       D.       1       A         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       B         A.       3       B.       7       B         C.       9       D. none of these       B       C         894)       The SI unit of Planck's constant       C       C       C         A.       Joule-sec ⁻¹ B.       Joule-sec ⁻² C         C.       Joule-sec ⁻¹ B.       Joule-sec ⁻² C         Softium Light       D.       none of these       C       C         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C       C         A.       Laser       B.       Sodium Light       C       C         C. white light       D.       none of these       E       D		C. same speed in vacuum	D.	mass	
A. four processes       B. six processes       A         C. eight processes       D. ten processes       A         892) $[L_x, L_y] =$ A         A. $hL_x$ B. $hL_y$ A         C. Zero       D. 1       A         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       B         A. $3$ B. $7$ B         C. $9$ D. none of these       B         894)       The SI unit of Planck's constant       B         A. Joule-sec $^{-1}$ B. Joule-sec $^{-2}$ C         C. Joule-sec       D. none of these       C         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A. Laser       B. Sodium Light       C         C. white light       D. none of these       C	891)	Carnot cycle consists of			
A. four processes       B. six processes       A         C. eight processes       D. ten processes       A         892) $[L_x, L_y] =$ A         A. $i\hbar L_x$ B. $i\hbar L_y$ A         C. Zero       D. 1       A         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       A         A. $[3$ B. $7$ B         C. 9       D. none of these       B         894)       The SI unit of Planck's constant       B         A. Joule-sec $^{-1}$ B. Joule-sec $^{-2}$ C         C. Joule-sec $^{-1}$ B. Joule-sec $^{-2}$ C         Rest       D. none of these       C         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A. Laser       B. Sodium Light       C         C. white light       D. none of these       C         Rest       B. Sodium Light       C         C. white light       D. none of these       C			1		
C. [eight processes       D. [ten processes         892) $[L_x, L_y] =$ A. $[thL_z]$ B. $[thL_y]$ C. Zero       D. 1         893)       If the value of angular momentum quantum number $(l)$ is 3, then the number of possible <i>m</i> values is         A. [3       B. 7         C. [9]       D. [none of these         894)       The SI unit of Planck's constant         A. [Joule-sec ⁻¹ B. Joule-sec ⁻² C. Joule-sec       D. [none of these         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:         A. [Laser       B. Sodium Light         C. [white light       D. none of these		A. four processes	B.	six processes	А
892) $[L_x, L_y] =$ A $i\hbar L_x$ A         A. $i\hbar L_z$ B. $i\hbar L_y$ A         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       B         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       B         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       B         A.       3       B       7         C.       9       D.       none of these         894)       The SI unit of Planck's constant       C         A.       Joule-sec $^{-1}$ B.       Joule-sec $^{-2}$ C         C.       Joule-sec $^{-1}$ B.       Joule-sec $^{-2}$ C         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A.       Laser       B.       Sodium Light       C         C.       white light       D.       none of these       C         B.       Sodium Light       D.       C       C         B.       Elux through any closed surface is equal to the charge enclosed divided by       C       C		C. eight processes	D.	ten processes	
A. $i\hbar L_z$ B. $i\hbar L_\gamma$ A         C.       Zero       D.       1         893)       If the value of angular momentum quantum number $(l)$ is 3, then the number of possible <i>m</i> values is       B         A.       3       B.       7         C.       9       D.       none of these         894)       The SI unit of Planck's constant       B         A.       Joule-sec ⁻¹ B.       Joule-sec ⁻² C.       Joule-sec ⁻¹ B.       Joule-sec ⁻² C.       Joule-sec       D.       none of these         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A.       Laser       B.       Sodium Light       C         C. white light       D.       none of these       C	892)	$[L_x, L_y] =$			
A. $i\hbar L_z$ B. $i\hbar L_y$ A.         C.       Zero       D.       1         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       B         A.       3       B.       7         B.       7       D.       D.         Rest of the value of angular momentum quantum number (l) is 3, then the number of possible m values is       B         A.       3       B.       7         C.       9       D.       none of these         894)       The SI unit of Planck's constant       C         A.       Joule-sec ⁻¹ B.       Joule-sec ⁻² C.       Joule-sec       D.       none of these         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A.       Laser       B.       Sodium Light       C         C.       white light       D.       none of these       C         896)       Flux through any closed surface is equal to the charge enclosed divided by       C		•	<b>_</b>		
C.       Zero       D.       1         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is         A.       3       B.         C.       9       D.         94)       The SI unit of Planck's constant         A.       Joule-sec ⁻¹ B.         A.       Joule-sec ⁻² C         C.       Joule-sec ⁻¹ B.         Vising Michelson Interferometer we cannot accurately measure the wavelength of:       C         A.       Laser       B.         A.       Laser       B.         Sodium Light       C         C. white light       D.         P.       none of these		A. $l\hbar L_z$	В.	$i\hbar L_{y}$	А
893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is         893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is         A. 3       B. 7         C. 9       D. none of these         894)       The SI unit of Planck's constant         A. Joule-sec ⁻¹ B. Joule-sec ⁻² C. Joule-sec ⁻¹ D. none of these         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:         A. Laser       B. Sodium Light         C. white light       D. none of these		C. Zero	D.	1	
893)       If the value of angular momentum quantum number (l) is 3, then the number of possible m values is       B         A. 3       B. 7       B         C. 9       D. none of these       B         894)       The SI unit of Planck's constant       C         A. Joule-sec ⁻¹ B. Joule-sec ⁻² C         C. Joule-sec       D. none of these       C         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A. Laser       B. Sodium Light       C         C. white light       D. none of these       C         896)       Flux through any closed surface is equal to the charge enclosed divided by       C					
A. 3       B. 7       B         C. 9       D. none of these       B         894)       The SI unit of Planck's constant       C         A. Joule-sec ⁻¹ B. Joule-sec ⁻² C         C. Joule-sec       D. none of these       C         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A. Laser       B. Sodium Light       C         C. white light       D. none of these       C         896)       Flux through any closed surface is equal to the charge enclosed divided by       C	893)	If the value of angular momentum quantum number (	l) i	s 3, then the number of possible $m$ values is	
A. 3       B. 7       B         C. 9       D. none of these       B         894)       The SI unit of Planck's constant       C         A. Joule-sec ⁻¹ B. Joule-sec ⁻² C         C. Joule-sec       D. none of these       C         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A. Laser       B. Sodium Light       C         C. white light       D. none of these       C			1		P
C. 9       D. none of these         894)       The SI unit of Planck's constant         A. Joule-sec ⁻¹ B. Joule-sec ⁻² C         C. Joule-sec       D. none of these         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A. Laser       B. Sodium Light       C         C. white light       D. none of these       C         896)       Flux through any closed surface is equal to the charge enclosed divided by       C		A. 3	B.	7	В
894)       The SI unit of Planck's constant       C         A. Joule-sec ⁻¹ B. Joule-sec ⁻² C         C. Joule-sec       D. none of these       C         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A. Laser       B. Sodium Light       C         C. white light       D. none of these       C         896)       Flux through any closed surface is equal to the charge enclosed divided by       C	00.4	C. 19	D.	none of these	
A. Joule-sec ⁻¹ B. Joule-sec ⁻² C         C. Joule-sec       D. none of these       C         895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A. Laser       B. Sodium Light       C         C. white light       D. none of these       C         896)       Flux through any closed surface is equal to the charge enclosed divided by       C	894)	The SI unit of Planck's constant			
A:     Doule-see       C.     Joule-sec       B     None of these       Vertical Solution     None of these       B     Solution       A:     Laser       C.     white light       D:     none of these		A Joule-sec ⁻¹	B	Ioule-sec ⁻²	С
895)       Using Michelson Interferometer we cannot accurately measure the wavelength of:       C         A. Laser       B. Sodium Light       C         C. white light       D. none of these       C         896)       Flux through any closed surface is equal to the charge enclosed divided by       C		C. Joule-sec	D.	none of these	
A. Laser       B. Sodium Light       C         C. white light       D. none of these	895)	Using Michelson Interferometer we cannot accurately	<u>/</u> .m	easure the wavelength of	
A. Laser     B. Sodium Light     C       C. white light     D. none of these     C		Using wheneison interferometer we cannot accurately	111	casure the wavelength of.	
C. white light D. none of these		A. Laser	Β.	Sodium Light	С
896) Flux through any closed surface is equal to the charge enclosed divided by		C. white light	D.	none of these	
	896)	Flux through any closed surface is equal to the charge	e er	nclosed divided by	

		1		_
	A.	permittivity of free space	B. permeability of free space	А
	C.	both of these	D. none of these	-
897)	]	Light year is a unit of		
	A.	velocity	B. time	С
	C.	distance	D. none of these	-
898)		According to the special theory of relativity		
	A.	mass of moving object decreases	B. observed length never changes	С
	C.	mass of moving object increases	D. none of these	
899)	,	The energies of quantum mechanical harmonic oscilla	ator are	
	A.	continuous	B. zero	D
	C.	infinite	D. discrete	
900)		Kelvin and Centigrade thermometers will show same	reading at	
	A.	-100 °C	B.  -273 °C	D
	C.	-40 °C	D. None of these	-
901)	]	Frequency of AC supply in Pakistan is Hz		
	A.	60 Hz	B. 120 Hz	С
	C.	50 Hz	D. 220 Hz	-
902)	,	The electrical force of attraction between two opposit	ely charges is directly proportional to the magnitude of	
		**		
	A.	addition of charges	B. difference of charges	D
	C.	ratio of charges	D. product of charges	
903)	,	The first process of Carnot cycle is expa	insion	
	A.	isothermal	B. adiabatic	А
	C.	isochoric	D. none of these	
904)	]	Frame of reference is which laws of motion are satisf	ied is called	
	A.	accelerating	B. inertial	В
	C.	non inertial	D. moving frame	
905)	,	The velocity of a body executing simple harmonic mo	otion is maximum at position	
	A.	extreme	B. mean	В
	С.	all positions	D. none of these	
906)		Kilowatt hour is a unit of		
	A.	power	B. energy	В
	C.	work	D. none of these	
907)	If	an electron has zero orbital angular momentum,	the magnitude of its magnetic dipole moment equals:	
	A.	zero	B. half the Bohr magneton	С
	C.	one Bohr magneton	D. twice a Bohr magneton	
908)	,	While crossing a suspension bridge the soldiers are or	rdered to break the steps to avoid	
	A.	interference	B. resonance	В
	C.	diffraction	D. superposition	1
		L		

909)	909) A monochromatic source of light gives light of				
	A. one color	Β.	two color	А	
	C. seven color	D.	none of these		
910)	The frequency of sound when the source is moving a	wa	y from the stationary listener		
	A. increases	Β.	decreases	В	
	C. remains same	D.	none of these		
911)	Time rate of change of angular momentum is called				
	A. force	Β.	flux	D	
	C. momentum	D.	torque		
912)	In photoelectric effect the energy of emitted photon in	ncr	eases with the		
	A. Frequency of incident light	Β.	Intensity of incident light	А	
	C. Both of these	D.	None of these		
913)	A transformer works on the principle of				
	A. self-induction	B.	mutual induction	В	
	C. Gauss's law	D.	none of these		
914)	An AC voltage has peak value of 25 V. What is its ro	ot	mean square value?		
,					
	A. 1.5 V	Β.	1.7 V	С	
	C. 17.7V	D.	23.2 V		
915)	A transformer is designed to change 220 V to 9.0 V.	W	hat is the turn ratio?		
				_	
	A. 16.4	Β.	24.4	В	
	C.  36.4	D.	48.4		
916)	The efficiency of Carnot engine operating between 0	°C	and 100 °C is		
	A. infinite	Β.	10 %	D	
	C. 100 %	D.	none of these		
917)	A force of 10 N acts on a body to a distance of 10 me	ter	. The work done is		
	A. 10 J	B.	10 W	С	
	C. 100 J	D.	100 W		
918)	According to the theory of relativity:				
	A. moving clocks run fast	Β.	energy is not conserved in high speed collisions	П	
	C. the speed of light must be measured relative to	D.	none of the above are true		
	the other	[			
	the ether				
919)	The Stern-Gerlach experiment makes use of:				
	A. a strong uniform magnetic field	B.	a strong non-uniform magnetic field	В	
	C. a strong uniform electric field	þ.	a strong non-uniform electric field		
920)	Dedie weves are readily differented around building	<u>г</u> .	uboroog light woves are pagligibly differented		
920)	around buildings. This is because radio waves:	<u>3</u> 8 '	whereas light waves are negligibly diffracted		
		6		В	
	A. are plane polarized	В.	have much longer wavelengths than light waves	, D	

Discipline:	PHYSICS	

	C. have much shorter wavelengths than light waves	D.	are nearly monochromatic (single frequency)		
921)	The energy level difference of an atom is $3 \times 10^{-18}$ J.	The	e frequency of photon required to make this transition		
	is:				
	A. 453 Hz	Β.	4.53 x10 ¹⁵ Hz	В	
	C. 5387 Hz	D.	4.53 x10 ⁶ Hz		
922)	Weigner Seitz cell is an example of				
	A. Cubic cell	В.	Primitive cell	В	
	C. Reciprocal cell	D.	Largest cell		
923)	If the expectation value corresponding to the Hamilto called	nia	an operator does not change with time, then the state is		
	A. Metastable state	В.	Stationary state	В	
	C. Excited state	D.	None of these		
924)	The number of generalized coordinates needed to des	cri	be a classical system is equal to		
	A. No. of Cartesian coordinates	В.	No. of degrees of freedom	В	
	C. No. of spherical coordinates	D.	none of these		
925)	The wave function of bosons is	<u> </u>			
	A. symmetric	Β.	antisymmetric	А	
	C. zero	D.	none of these	~	
926)	The depletion region of a junction in semiconductor i	s fo	ormed	С	
	A. During the manufacturing process	Β.	When forward bias is applied to it		
	C. Under reverse bias	D.	When its temperature is reduce		
927)	An observer moves in a rocket in the direction paralle stick is	el (	one meter long). The observed length of the meter		
				В	
	A. Greater than one meter	Β.	Less than one meter		
	C. equal to one meter	D.	none		
928)	The equipotential surfaces associated with a charg	ed	point particles are:		
	A radially outward from the particle	B	vertical planes	D	
	C horizontal planas	þ. h	concentric spheres contered at the particle		
020)	C. [10112011121 planes The value of Hamiltonian in a classical system descri	p. bor	concentric spheres centered at the particle		
929)	a) internal energy	Des	\$ 115		
	h) enthalpy				
	c) kinetic energy				
	d) sum of kinetic and potential energy			D	
	A. internal energy	Β.	enthalpy		
	C. kinetic energy	D.	sum of kinetic and potential energy		
930)	A restriction on the freedom of motion of a system of	pa	articles in the form of a condition which must be		
	satisfied by their coordinates is called	-			

	A.	friction	Β.	constraint	В
	C.	resistive force	D.	normal reaction of surface	
931)		The life time of meta stable state is			
	A.	Less than life time of excited state	В.	Equal to the life time of excited state	С
	C.	Greater than the life time of excited state	D.	None of these	
932)		Heisenberg uncertainty principle is a direct consequer canonically conjugate variables of position and mome	nce ent	e of of operators corresponding to um	
	A.	Commutivity	Β.	Non-commutivity	В
	C.	Conductivity	D.	None of above	

		Answer Key
933) If $F(r) < 0$		
A. The central force is positive or attractive.	B. The central force is negative or attractive.	
C. The central force is positive or repulsive.	D. The central force is negative or repulsive.	В
934) When the velocity of a body becomes equal to the	e velocity of light, then its inertia would be	
A. maximum	B. minimum	D
C. finite	D. infinite	
935) If the force acting on a body is doubled, then acce	leration becomes	В
A. half	B. doubled	
C. one fourth	D. constant	
936) A baseball is thrown vertically into the air. The ac	cceleration of the ball at its highest point is:	
A. zero	B. g, down	В
C. g, up	D. 2g, down	
937) Which of the following is not a derived quantity		
A. force	B. torque	D
C. velocity	D. mass	
938) Volume of a nucleus with radius R is		
A. $4/3 \pi R^3$	B. $8/3 \pi R^3$	А
C. $3/4 \pi R^3$	D. none	
939) The Plank's constant has the dimensions		
A. $[ML^{2}T^{-2}]$	B. [MLT ⁻² ]	C
C. $[ML^2T^{-1}]$	$D. \left[ML^{-2}T^{2}\right]$	
940) The momentum of a photon is		
A. $p=h/\lambda$	B. $p = \lambda/h$	А
C. p=hf	D. $p=mc^2$	
941) A measurement on identical states need not give id	dentical results but only identical	
A. Probability distribution	B. Charge distribution	А

	C. Momentum distribution	D.	Velocity distribution	
942)	(942) The semiconductors have temperature coefficient of resistance.		pefficient of resistance.	
		<u> </u>	NY	B
	A. Positive	В.	Negative	D
	C Zara	h	None of these	
9/3)	A material which magnetizes strongly in the same dir	p. Poct	ion to the applied external magnetic field is:	
)+3)	A material which magnetizes strongly in the same un		ion to the applied external magnetic field is.	
	A. diamagnetic	B.	paramagnetic	С
	C. ferromagnetic	D.	none of these	
944)	For a particle in one dimensional box, the energy states	ar	e	
ĺ ĺ	,			
	A. quantized	B.	continuous	А
	C. zero	D.	none of these	
945)	Average acceleration of body during time interval 't' i	s g	iven by slope of its	
		U	× 1	
	A. velocity-speed graph	B.	velocity-time graph	В
	C. speed-time graph	D.	velocity-displacement graph	
0.1.0				
946)	Angular momentum of a particle is constant in the abs	sen	ice of	
	A applied force	þ	opplied torque	В
	C applied impulse	D. D	applied torque	D
047)	When internal former in an assemblance of morticles for	<u>р</u> .	none of these	
947)	of a principle known as			
	A. D Alembert's principle	B.	Hamiltons's principle	А
	C. Hygen's principle	D.	none of these	
948)	If a system contains a coordinate but it is absent in La	ıgra	angian then the coordinate is	
	A. zero	Β.	cyclic	В
	C. negative	D.	none of these	
949)	The momentum corresponding to a coordinate presen	t ir	the system but not in the Lagrangian remains	
	A. variable	Β.	zero	D
	C. increasing only	D.	conserved	
950)	A central force field is always	-		
	A. conservative	Β.	non conservative	А
	C. constant	D.	none of these	
951)	The device which converts solar energy in electrical e	ene	rgy is called	
	A. Transducer	B.	Amplifier	С
	C. Photovoltaic cell	D.	lead acid battery	
952)	The antiparticle of electron is			
	A. proton	B.	fermion	D
	C. boson	D.	positron	
953)	Maxwell's equations in electrodynamics deal with	•		
	A. Gauss's law	В.	Ampere's law	D
				•

	C. Faraday's law	D. All of these	
954)	In the equation $H\psi = a \psi$ , a is the		
	A. operator	B. eigen function	С
	C. eigen value	D. normalization constant	
955)	Which type of radiation travels at highest speed thro	bugh vacuum	
	A. gamma rays	B. light waves	D
	C. radio waves	D. all have same speed	
956)	The efficiency of Carnot engine working between tw	vo specified temperatures is	_
	A. less than any other engine	B. greater than any engine	В
	C. zero	D. 100 %	
957)	Protons are		_
	A. fermions	B. bosons	В
	C. chargeless	D. massless	
958)	Fiber optics communication make use of		
	A. laser light	B. radio waves	A
	C. sound waves	D. none of these	
959)	The number of neutrons in Pu having atomic numbe	er 94 and mass number 242 is	
	A. 94	B. 148	В
0.40	<u>C.  242</u>	D.  336	
960)	The superconductors are the materials having		в
		D. zero resistivity	5
061)	L ang's law is in apportance with	D. none of these	
901)			А
	A. The law of conservation of energy	D. I an af accounting of momentum	
962)	The SI unit of Rydberg constant is	p. Law of conservation of momentum	
	A. 1/m	B. 1/cm	A
	C. $ m/s^2 $	D. s	
963)	A radioactive element has a half-life of 5000 years,	its full life will be	_
	A. 10000 years	B. 5500 years	D
	C. 6000 years	D. none of these	
964)	The energy acquired by an electron having charge e is	and accelerated through a potential difference of V volts	
	A. V/e	B. e/V	С
	C. Ve	D. Ve/2	
965)	Which of the following radiation is not affected by e	electric and magnetic fields	
	A. alpha rays	B. beta rays	C
	C. x rays	D. none of these	
966)	Uncertainty principle was presented by		
	A. Dirac	B. deBroglie	
	C. Schrodinger	D. Heisenberg	В
L			1

967)	7) When a dielectric material is used the capacitance of a parallel plate capacitor				
	A. decreases	B.	increases	В	
	C. remains the same	D.	becomes zero		
968)	Pascal is a unit of	1			
	A. force	B.	work	D	
	C. energy	D.	pressure		
969)	No two electrons in an atom have all same quantum n	un	bers. This principle is	D	
	A. D Alembert's principle	В.	Hamilton's principle		
	C. Principle of virtual work	D.	Pauli's exclusion principle		
970)	According to special theory of relativity what is true a	abc	but speed of a moving body		
	A. it can be greater than speed of light	В.	it can become equal to speed of light	C	
	C. it is always less than speed of light	D.	relativity does not impose any condition on speed		
971)	According to Kepler's laws the orbits of planets around	nd	sun are		
			-		
	A. circular	Β.	elliptical	В	
	C. rectangular	D.	none of these		
972)	The dimensions of Planck's constant are same as thos	se c	of		
	A. angular momentum	B.	energy	А	
	C. force	D.	No dimension		
973)	(3) What is correct about velocity and force				
	A. both are scalar	B.	both are vector		
	C. force scalar, velocity vector	D.	force vector, velocity scalar		
974)	Copper is an example of				
	A. Conductor	B.	insulator	А	
	C. semiconductor	D.	Non metal		
975)	The vectors in Hilbert space are orthogonal if the inner product of these vectors is				
	A. 1	Β.	negative	D	
	C. positive	D.	zero		
976)	The existence of ether medium was experimentally re	ejec	ted by		
	A. Schrodinger	B.	Heisenberg	С	
	C. Michelson-Morely	D.	Einstein		
977)	77) The centigrade and Fahrenheit scales have the same reading when the numerical value of temperature is				
	A40	В.	60	A	
	C6	D.	120		
978)	(8)   The weakest of all forces is				
	A. Strong nuclear force	В.	Weak nuclear force	D	
	C. electromagnetic	D.	gravitational force	-	
979)	The range of alpha particles in air is		1		

	A. 7 cm	B.	7 m	А	
	C. 70 m	D.	7 km		
980)	The combining of Hydrogen nuclei which results in huge release of energy is called				
	A Circles	Ь		Л	
	A. IISSION	В. D	fusion	D	
081)	The product of force and time is called	ρ.	lusion		
901)	The product of force and time is called				
	A. mass	B.	momentum	D	
	C. pressure	D.	Impulse		
982)	The sum of kinetic and potential energies is called			С	
	A. Lagrangian	B.	torque		
	C. Hamiltonian	D.	none of these		
983)	The first ionization potential of hydrogen is				
	A. 13.6 eV	B.	3.4 eV	А	
	C13.6 eV	D.	none of these		
984)	The unit "henry" is equivalent to:				
	5 1				
	A. volt·second/ampere	B.	volt/second	А	
	C. ohm	D.	ampere · volt/second		
985)	Force per unit area is				
				_	
	A. newton	В.	pressure	В	
00()	C. work	D.	None of these		
986)	The dimensions of work are				
	A MT ⁻¹	R	MI T ⁻¹	D	
	$=$ $M^2 L^2 T$	<i>D</i> .			
	C	D.	$\mathrm{ML}^{2'}\mathrm{I}^{-2}$		
987)	987) Newton-sec is a unit of				
		L	-	C	
	A. energy	B.	work	C	
088)	Linear momentum	<u>р.</u> Ъс	Angular momentum		
900)	In conservative field the total work done in moving a	00	dy along closed pair is		
	A. zero	B.	positive	А	
	C. negative	D.	None of these		
989)	One Angstrom is equal to				
				5	
	A. 10 ⁻¹⁰ mm	Β.	10 ⁻⁸ m	D	
	C. 10 ⁻⁹ mm	D.	10 ⁻¹⁰ m		
990)	An object moving in a circle at constant speed:				
	A. must have only one force acting on it	B.	is not accelerating	D	
	is held to its path by centrifugal force		has an appalaration of constant magnitude		
		υ.	has an acceleration of constant magnitude		
991)	The production of line spectrum of x rays is due to				
	A. Bremsstrahlung process	B.	Interaction of light with metals	С	
	C. Inner shell transitions	D.	pair production		
992)	Pair production takes place only when the energy of t	he	photon fulfills the condition that		

	A. $hf < 0.52 MeV$	Β.	hf < 1.02 MeV	С
	C. hf>1.02 MeV	D.	none of these	
993)	Compared to a recoiling rifle, the bullet fired has a gr	reat	ter	
				В
	A. momentum	Β.	kinetic energy	
	C. both of these	D.	none of these	
994)	A feather and a coin dropped in a vacuum fall with each	qua	վ	
		-	1	
	A. Kinetic energy	Β.	magnetic field	D
	C. momentum	D.	acceleration	
995)	⁹⁹⁵⁾ The Fermi energy of a metal depends primarily on:			
		-	1	D
	A. the temperature	В.	the volume of the sample	D
	C. the mass density of the metal	D.	the number density of conduction electrons	
996)	An array of points in space is called			
	A. lattice	В.	Brillouin zone	А
	C. unit cell	D.	none of these	
997)	The cathode ray oscilloscope can be used to measure			
	A. voltage	В.	frequency	С
	C. both a and b	D.	neither a nor b	

	Total flux passing through a closed surface held in a magnetic field is			В
	A.Infinity	Β.	Zero	
998	C. Unity	D.	None of these	
	Maxwell's equations inform give information a	t po	pints of discontinuity in electromagnetic fields.	D
999	A.Differential	Β.	Integral	
	C. Algebraic	D.	None of these	
	Curl of magnetic field intensity is			А
1000	A.Current density	Β.	Magnetic field intensity	
	C.Current	D.	None	
Discipline: _____PHYSICS______