PHYSICS: BASIC MECHANICS

					Answer Key
1)	What is the magnitude of the unit vector?				A
	A.	1	B.	0	
	C.	2	D.	None of these	
2)	What is the magnitude of the vector, $12 \mathrm{i}-8 \mathrm{j}-24 \mathrm{k}$?				B
	A.		B. 28		
	C.	38	D. 48		
3)	What is the difference between a position vector and unit vector?				D
	A. $\begin{aligned} & \begin{array}{l}\text { Position vector has magnitude }=1 \text { and direction, while } \\ \text { the unit vector has magnitude }=0 \text { and no direction }\end{array}\end{aligned}$ B. $\begin{aligned} & \text { Position vector has magnitude }=0 \text { and direction, while } \\ & \text { unit vector has magnitude }=0 \text { and no direction }\end{aligned}$				
	C.	Posit while direc	D.	Position vector has some magnitude and direction, while the unit vector has magnitude $=1$ and a specified direction	
4)	What is not the condition for the equilibrium in three dimensional system of axis?				D
	A. $\mathrm{Fx}=0$		B. $\mathrm{Fy}=0$		
	C. $\sum \mathrm{Fz}=0$ - D		D. $\sum \mathrm{F} \neq 0$		
5)	What does the moment of the force measure?				A
	A.	The	B.	The moment of inertia of the body about any axis	
	C.	The on the	D.	The total work is done on the body by the force	
6)	The tendency of rotation of the body along any axis is also called				C
	A.	Mom	D. Force		
	C. Torque				
7)	Which of the following is true?				A
	A.	Total the v	B.	Total moment of various forces acting on the body is the algebraic sum of all moments	
	C.	Total alwa	D.	Total moment of various forces acting on the body is the vector sum of all moments which is perpendicular to each other forces	
8)	What does Newton's third law states?				B
	A.	The appli	B.	For every reaction, there is an opposite reaction	
	C.	The tang	D.	The body is rest until a force is applied	
9)	Moment of inertia of solid sphere is				C
	A. ${ }^{2 / 3} M r^{2}$		B. $11 / 2 M r^{2}$		
	C. $M r^{2}$		D. $\pi r^{4} / 2$		
10)	The necessary condition of equilibrium of a body is				D
		Alge force		Algebraic sum of vertical components of all the forces must be zero	
		Algeb point		All (A), (B) and (C)	
11)	Newton's law of Collision of elastic bodies states that when two moving bodies collide each other, their velocity of separation				C
	A. Is dir C. Bears		B. Is inversely proportional to their velocity of approachD. Is equal to the sum of their velocities of approach		
12)	The angle of projection at which the horizontal range and maximum height of a projectile are equal is				D
	A. 36°		B. 45°		
	C.	56°	D. 76°		
13)	If the resultant of two equal forces has the same magnitude as either of the forces, then the angle between the two forces is				D
	A.	30°	B. 60°		
	C.	90°	D. 120°		

\qquad PHYSICS

PHYSICS: CLASSICAL MECHANICS)

					Answer Key
61)	Newtonian Mechanics is also known as				C
	A.	Particle Mechanics	B.	Wave Mechanics	
	C.	Classical Mechanics	D.	None	
62)	Classical Mechanics is applied to the bodies whose speed remain-------in comparison with the speed of light.				A
	A. Small C. Comparable		B. large		
			D. none		
63)	is applied to the bodies whose speeds are comparable with the speed of light.				A
		Classical Mechanics	B.	Quantum Mechanics	
	C.	Relativisitics Mechanics	D.	none	
64)	------------- is applied to the physical system of molecular or smaller size.				B
		Classical Mechanics	B.	Quantum Mechanics	

Discipline: \qquad PHYSICS

	C. Relativisitics Mechanics	D. none	
65)	Conservative forces have		B
	A. Velocity	B. Co-ordinates	
	C. both a \& B	D. None	
66)	Non-Conservative forces depends on----		C
	A. Velocity	B. Co-ordinates	
	C. both a \& B	D. None	
67)	Holonomics Constraints can be expressed in terms of		D
	A. time and velocity B. only time		
	C. only coordinates	D. co-ordinates and time	
68)	If q_{j} is cyclic in lagrangian then------		B
	A. $\mathrm{P}_{\mathrm{j}} \mathrm{is}$ not conserved	B. P_{j} is conserved	
	C. The Lagrangian is circular	D. none	
69)	If no force acting on a particle then the total linear momentum is----		D
	A. Zero	B. not conserve	
	C. maximum	D. conserve	
70)	If no torque is acting on a particle then the total angular momentum is-----		C
	A. Zero	B. minimum	
	C. constant	D. not conserve	
71)	The field in which work done is zero is called ----- field.		A
	A. Coservative	B. non-conservative	
	C. circular	D. none	
72)	If the forces acting on a particle is conserve then the total energy will be------		A
	A. $\mathrm{T}+\mathrm{V}$	B. T-V	
	C. T X V	D. None	
73)	If the constraint is not expressed in form of equation then it is called ---- constrain		B
	A. Holonomic	B. Non-holonomic	
	C. Scleronomous	D. none	
74)	Double pendulom has -------------- degree of freedom.		C
	A. Three	B. four	
	C. two	D. one	
75)	Single pendulom has -------------- degree of freedom		D
	A. three	B. four	
	C. two	D. one	
76)	A rod of length L lying in xy-plane has------------degree of freedom		A
	A. three	B. four	
	C. two	D. one	
77)	Virtual displacements are infinitesimal and -------------		

90) A particle of mass 5 kg and velocity $3 \mathrm{~cm} / \mathrm{s}$ has a momentum----
A. $1.5 \mathrm{kgm} / \mathrm{s}$
B. $0.015 \mathrm{kgm} / \mathrm{s}$
C. $0.15 \mathrm{kgcm} / \mathrm{s}$
D. $0.15 \mathrm{kgm} / \mathrm{s}$
A. remains unchanged
B. also changed
C. magnitude changes
D. none
92) In Conservative system the potential energy is ---
A. depends on velocity
B. depends on coordinates
C. depends on time
D. none
93) A rigid body possesses____ degrees of freedom.
A. one
B. two
C. four
D. six
94) A 1200kg car moves down the road at $20 \mathrm{~cm} / \mathrm{s}$. What is its momentum.
A. $240 \mathrm{kgm} / \mathrm{s}$
B. $240 \mathrm{kgcm} / \mathrm{s}$
C. $2400 \mathrm{kgm} / \mathrm{s}$
D. $24000 \mathrm{kgcm} / \mathrm{s}$
95) A skater moves with a constant velocity of $12 \mathrm{~km} / \mathrm{s}$. If her momentum is $600 \mathrm{kgm} / \mathrm{s}$, what is its mass.
A. 72 kg
B. 0.05 kg
C. 50 kg
D. 46 kg
96) Rate of change of momentum is known as----
A. Torque
B. momentum
C. force
D. none
97) A curve between two ponts along which a body can move under gravity in shorter time than any other curve is called---
A. geodesics
B. Euler's lagrangian
C. Catenary
D. brachistochrone
98) A 100 kg body moving with velocity of $10 \mathrm{~cm} / \mathrm{s}$ has K.E.
A. 0.5 J
B. 10000 J
C. 5000 J
D. 0.05 J
99) If ' P ' is the momentum of an object of mass ' m ' the expression $P^{2} / 2 m$ has base units identical to
A. Energy
B. Velocity
C. Power
D. Force
100) What must change when a body is accelerating
A. force acting on a body
B. mass of body
C. the speed of body
D. velocity of body
101) Total weight of body acts
A. $\begin{aligned} & \text { at its one end }\end{aligned}$
B. at its other end
C. at its centre of gravity
D. at its centre
102) If the force acting on a body is doubled, then acceleration becomes
\qquad PHYSICS

\qquad PHYSICS

(BASIC QUANTUM/MODERN PHYSICS)

					Answer Key
121)		odern Physics mainly based upon			A
	A.	quantum physics	B.	newton physics	
	C.	classical physics	D.	nuclear physics	
122)		ture of radiation emitted by a body depe			C
	A.	mass	B.	volume	
	C.	temperature	D.	pressure	
123)		high temperature, a body generally emi	atio	ns of	A
	A.	shorter wavelength	B.	longer wavelength	
	C.	lower frequency	D.	non of these	
124)		ideal black body is			D
	A.	Most efficient radiator	B.	a perfect absorber of radiation	
	C.	a body whose absorptive power is unity	D.	all of these	
125)		ackbody energy distribution curves are	rap	hs between	C
	A.	Temperature and intensity	B.	wavelength, temperature, and intensity	
	C.	wavelength and intensity	D.	wavelength and temperature	
126)		ien's theory explains energy distribution	lac	body for	B
	A.	larger wavelength	B.	shorter wavelength	
	C.	medium wavelength	D.	infinite wavelength	

\qquad PHYSICS

127)	The value of Stefen's constant is Wm ${ }^{-2} \mathrm{~K}^{-4}$			
	A.	3.67×10^{-8}	B	5.67×10^{-8}
	C.	7.67×10^{-8}		9.67×10^{-8}

128) According to Max Plank energy is released or absorbed in discreat packets called
A. mesons
B. positrons
C. quanta
D. non of these
129) According to Max Plank the energy of quanta is
A. $\mathrm{E}=\mathrm{mc}^{2}$
B. $\mathrm{E}=\mathrm{mv}^{2}$
C. $\mathrm{E}=\mathrm{h} / \mathrm{f}$
D. $\mathrm{E}=\mathrm{hf}$
130) The Plank's constant has the dimensions
A. $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
B. $\left[\mathrm{MLT}^{-2}\right]$
C. $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
D. $\left[\mathrm{ML}^{-2} \mathrm{~T}^{2}\right]$
131) Abeam of red light and a beam of blue light have exactly the same energy. Which beam contains the greater number of photons?
A. blue
B. red
C. both a and b
D. non of these
132) A photon is always considered to be
A. at rest
B. moving with speed of light
C. moving with speed of electron
D. moving with speed of sound
133) The momentum of a photon is
B. $\mathrm{P}=\lambda / \mathrm{h}$
C. $\mathrm{P}=\mathrm{hf}$
D. $\mathrm{P}=\mathrm{mc} 2$
134) An human eye can detect the electromagnetic radiation of the type...... radiations.
A. infrared
B. far infrared
C. X - rays
D. red
135) A photon is considered to have
A. energy
B. momentum
C. wavelength and frequency
D. all of these
136) The speed of photon as compared with the speed of light is always
A. same
B. less
C. greater
D. non of these
137) The photo electric effect was explained by
A. Hertz
B. Einstein
C. Max Planck
D. Lummer and Pringshein
138) The maximum K.E of emitted photo electrons depends upon
A. the intensity of incident light
C. particular metal surface
B. frequency of incident light
C. D. both b and c
139) The no. of photo electrons emitted is directly proportional to the

A.	frequency of incident light
C.	both a and b

B. the intensity of incident light
D. none of these
140) There is certain frequency below which no electrons are emitted from the metal surface, this frequency is known as . frequency
A. critical
B. threshold
C. maximum
D. minimum
141) The value of threshold frequency for different metals is
\qquad PHYSICS

\qquad PHYSICS

157)	Which light emits greater no. of electrons from a metal surface				A
	A.	bright light	B.	dim light	
	C.	high frequency light	D.	low frequency light	
158)	In order to reduce uncertainty in momentum, one must use light of				A
		larger wavelength	B.	shorter wavelength	
	C	any wavelength	D.	none of these	
159)	The unit of Planks constant is				C
		volt	B.	Js^{-1}	
	A.	Js	D.	Nm	
160)	Rest mass of photon is				A
	A.	zero	B.	infinity	
	C.	hf / c	D.	hc / m	
161) The separation of ordinary white light into its components by the use of prism or grating is called					B
	A.	diffraction	B.	dispersion	
	C.	spectroscopy	D.	all of these	
162)	Which of the following is an example of continuous spectra				A
	A.	black body radiation spectrum	B.	molecular spectra	
	C.	atomic spectrum	D.	none of these	
163)	The spectral series were identified in the spectrum of hydrogen by				D
	A.	Einstein	B.	Compton	
	C.	Planks	D.	J. J Balmer	
164)	The spectrum of visible sunlight ranges from				C
	A.	$430 \mathrm{~nm}-650 \mathrm{~nm}$	B.	$600 \mathrm{~nm}-900 \mathrm{~nm}$	
	C.	$400 \mathrm{~nm}-700 \mathrm{~nm}$	D.	$300 \mathrm{~nm}-500 \mathrm{~nm}$	
165)	The simplest spectrum is that of				B
	A.	Oxygen	B.	hydrogen	
	C.	nitrogen	D.	chlorine	
166)	Balmer series contains the wavelength in the				A
	A.	visible region	B.	UV region	
	C.	IR region	D.	none of these	
167)	Brackett and Pfund series of spectral lines lies in the				D
	A.	visible region	B.	UV region	
	C.	IR region	D.	far IR region	
168)	When electron in hydrogen atom jumps from higher orbit into first orbit the set of lines emitted is called				A
	A.	Lyman series	B.	Balmer series	
	C.	paschen series	D.	Pfund series	
169)	According to Bohr's atomic model, the angular momentum of electron in an orbit is equal to an integral multiple of				B
	A.	$2 \mathrm{~h} / \pi$	B.	$\mathrm{h} / 2 \pi$	
	C.	$2 \pi / \mathrm{h}$	D.	$\mathrm{mh} / 2 \pi$	
170)	According to postulate of Bohr's theory				C
	A.	$\mathrm{E}_{\mathrm{n}}-\mathrm{E}_{\mathrm{p}}=\mathrm{f} \lambda$	B.	$\mathrm{E}_{\mathrm{n}}-\mathrm{E}_{\mathrm{p}}=\mathrm{hc}$	
	C.	$\mathrm{E}_{\mathrm{n}}-\mathrm{E}_{\mathrm{p}}=\mathrm{hf}$	D.	$\mathrm{E}_{\mathrm{p}}-\mathrm{E}_{\mathrm{n}}=\mathrm{hf} / \mathrm{c}$	
171)	If an electron jumps from lower to higher orbit it will				A
	A.	absorb energy	B.	emit energy	
	C.	either of these	D.	none of these	

\qquad

172)	The radius of first Bohr's orbit for hydro	om		C
	A. 0.053 m	B.	0.053 mm	
	C. 0.053 nm	D.	$0.053 \mu \mathrm{~m}$	
173)	1 Aungstrom is equal to			B
	A. $10^{-8} \mathrm{~m}$	B.	$10^{-10} \mathrm{~m}$	
	C. $10^{-12} \mathrm{~m}$	D.	none of these	
174)	First Ionization energy of hydrogen atom is			C
	A. 13.6 eV	B.	3.4 eV	
	C. -13.6 eV	D.	none of these	
175)	When an electron exists in its lowest state, it is called			D
	A. normal state	B.	ground state	
	C. excited state	D.	both a and b	
176)	X-rays were discovered by			C
	A. Balmer	B.	Einstein	
	C. Roentgen	D.	Curie	
177)	The velocity of x-rays is equal to that of			C
	A. cathode rays	B.	alpha rays	
	C. gemma rays or light rays	D.	none of these	
178)	X-rays are			A
	A. electromagnetic waves	B.	transverse waves	
	C. longitudinal waves	D.	mechanical waves	
179)	x-rays are			B
		B.	high energy photons	
	C. radio waves	D.	un-known wave nature	
180)	Photo cell is a device which converts			D
	A. electrical energy into chemical energy	B.	heat energy into electrical energy	
	C. mechanical energy into electrical energy	D.	light energy into electrical energy	
181)	Which of the following shell is closest to the nucleus			A
	A. K-shell	B.	L-shell	
	C. M-shell	D.	N -shell	
182)	The transition of electrons between the various shells give rise to			A
	A. characteristic x-rays spectrum	B.	continuous x-rays spectrum	
	C. both a and b	D.	none of these	
183)	A x-ray photon produced due to transition of electron from M shell to K shell is called			B
	A. $\mathrm{K} \alpha$	B.	K_{β}	
	C. $\mathrm{K} \gamma$	D.	none of these	
184)	x-rays can cause			A
	A. cancer C.	B.	malaria	
	C. both a and b	D.	none of these	

[PHYSICS- QUANTUM MECHANICS]

	Answer Key
185) The state of two distinguishable particles (ignoring spin) can be written as	B

\qquad

\qquad PHYSICS

\qquad PHYSICS

\qquad PHYSICS

249)The permittivity is also called	B
A. Electrostatic energy B. Dielectric constant	
C. Dipole moment D. Susceptibility	
250)Dielectric constant will be high in	C
A. Conductor B. Semiconductor	
C. Insulator D. Superconductor	
251)Find the susceptibility of a material whose dielectric constant 2.26	A
A. 1.26 B. 3.26	
C. 5.1 D. 1	
252)The susceptibility of free space is	B
A. 1 B. 0	
C. 2 D. ∞	
253)Find the inductance of a material with 100 turns, area 12 units and current of 2 A in air	A
A. 0.75 mH B. 7.5 mH	
C. 75 mH D. 753 mH	
254)Which of the following cannot be computed using the Biot savart law?	C
A. Magnetic Field intensity \quad B. Magnetic Flux density	
C. Electric Field intensity D. Permeability	
255)Tesla is unit of	C
A. Field strength B. Inductance	
C. Flux density D. Flux	
256)A magnetic field exists around	D
A. Iron B. Copper	
C. Aluminium D. Moving charges	
257)The ratio of intensity of magnetization to the magnetization force is known as	B
A. Flux density B. Susceptibility	
C. Relative permeability D. None of the above	
258)The force between two long parallel conductor is inversely proportional to	D
A. Radius of conductor \quad B. Current in one conductor	
C. Product of current in two conductors \quad D. Distance between the conductors	
259)The use of permanent magnets is not made in	C
A. Magnetos B. Energy meters	
C. Transformers D. Loud speakers	
260)Reciprocal of permeability is	A
A. Reluctivity B. Susceptibility	
C. Permittivity D. Conductance	
261)One tesla is equal to	C
$\begin{array}{ll}\text { A. } 1 \mathrm{wb} / \mathrm{mm} 2 & \text { B. } 1 \mathrm{wb} / \mathrm{m}\end{array}$	
C. $1 \mathrm{wb} / \mathrm{m} 2 \mathrm{D}$ ($1 \mathrm{wb} / \mathrm{m} 2$	
262)The unit of flux is the same as that of	D
A. Reluctance B. Resistance	
C. Permeance D. Pole strength	
263)The commonly used material for shielding or screening magnetism is	C
A. Copper B. Aluminium	
C. Soft iron D. brass	
264)Hysteresis loop in case of magnetically hard materials is more in shape as compared to magnetically soft materials.	C

\qquad

279)How does the magnetic compass needle behave in a magnetic field?	C
C. It assures a position which follows a line of magnetic flux \quad D. None of the above	
280)Which of the following materials are diamagnetic?	C
A. Silver B. Copper	
C. Silver and copper D. Iron	
281)For which of the following materials the saturation value is the highest?	D
A. Ferromagnetic materials B. Paramagnetic materials	
C. Diamagnetic materials D. Ferrites	
282)The attraction capacity of electromagnet will increase if the	D
$\begin{array}{ll}\text { A. core length increases } & \text { B. core area increases }\end{array}$	
C. flux density decreases D. flux density increases	
283)Core of an electromagnet should have	C
A. low coercivity \quad B. high susceptibility	
C. both of the above D. none of the above	
284)Magnetism of a magnet can be destroyed by	D
A. heating B. hammering	
C. by inductive action of another magnet D. by all above methods	
285)A long straight wire carries a current $\mathrm{I}=10 \mathrm{~A}$. At what distance the magnetic field $\mathrm{H}=1 \mathrm{Am}^{-1}$?	C
A. 1.39 m B. 1.19 m	
C. 1.59 m D. 1.79 m	
286)The law which states that the line integral of the magnetic field around a close curve is equal to the free current through a surface, is	C
A. Tellegen's theorem B. Gauss' law	
C. Ampere's law D. Coulomb's law	
287)The lines of force due to charged particles are	B
A. Always straight B. Always curved	
C. Sometimes curved D. None of the above	
288)The dissipation factor of a good dielectric is of the order of	A
$\begin{array}{ll}\text { A. } 0.0002 & \text { B. } 0.002\end{array}$	
C. 0.02 D. 0.2	
289)Which of the following expression is correct for electric field strength?	A
C. $\mathrm{E}=\mathrm{jtD}$ (D. $\mathrm{E}=\mathrm{nD} 2$	
290)The power dissipated in a pure capacitor is	A
A. Zero B. Proportional to applied voltage	
C. Proportional to value of capacitor D. Both (b) and (c) above	
291)Energy stored in the electric field of a capacitor when charged from a D.C source of voltage is equal to joules	A
A. CV2 B. C2V	
C. V2C D. CV	
292)A unit tube of flux is known as tube	B
A. Newton B. Faraday	
C. Michale D. None of above	
293)Mica capacitors are characterized by all of the following except	C

A. Stable operation	B. Accurate value	
C. Low leakage reactance	D. Low losses	
294)The flux-density at a distance of 0.1 m from a long straight wire, carrying a current of 200 A is		B
A. $5 * 10-4 \mathrm{~Wb} / \mathrm{m} 2$	B. $4 * 10-4 \mathrm{~Wb} / \mathrm{m} 2$	
C. $3 * 10-4 \mathrm{~Wb} / \mathrm{m} 2$	D. $2 * 10-4 \mathrm{~Wb} / \mathrm{m} 2$	
295) Which of the following materials is used for the magnetostatic effect?	eneration of ultrasonic waves by using	B
A. Paramagnetic material	B. Ferromagnetic material	
C. Diamagnetic material	D. Both paramagnetic and diamagnetic material	
296)Magnetic flux will be-------- if the surface area vector of a surface is perpendicular to the magnetic field.		A
A. Zero	B. Unity	
C. Close to maximum	D. Maximum	
297)What is the SI unit for magnetic reluctance?		D
A. Tesla	B. Henry	
C. Tesla $^{-1}$	D. Henry $^{-1}$	
298) In an electric magnetic circuit, for establish	magnetic field.	C
A. The movement of coil is required	B. Energy need not be spent, through energy is required to maintain it	
C. $\begin{aligned} & \text { Energy must be spent, through no energy is } \\ & \text { required to maintain it }\end{aligned}$	D. Energy is not at all required	
299)Two magnetic poles are located 5 cm apart in air. If each pole has a strength of 5 mWb , find the force of repulsion between them		B
A. $\frac{1}{\pi 2} \mathrm{~N}$	B. $\frac{6250}{\pi 2} \mathrm{~N}$	
C. $\frac{625}{\pi 2} \mathrm{~N}$	$\text { D. } \frac{62.5}{\pi 2} \mathrm{~N}$	
300)In a magnetic flux density, the total magnetic lines of force crossing a unit area in plane to the direction of flux are at \qquad		C
A. Acute angles	B. Obtuse angles	
C. Right angles	D. None of the above	
301)What does the constant ' μ ' indicate, while specifying the relation between magnetic flux density (B) and magnetic field intensity (H) ?		D
A. Persistivity	B. Permittivity	
C. Permissibility	D. Permeability	
302)If a conductor with length of 5 m is located along z -direction with a current of about 3 A in az direction $\& B=0.04 \mathrm{ax}(\mathrm{T})$, then what would be the value of force experienced by conductor?		B
A. 0.6 ax N	B. 0.6 ay N	
C. 0.6 zz N	D. None of the above	
303)The main and important constituent of perm alloy is		D
A. Tungsten	B. Chromium	
C. Cobalt	D. Nickel	
304)Basically, a degaussing is the process of		B
A. Remagnetizing metallic parts	B. Demagnetizing metallic parts	
C. Removal of magnetic impurities	D. Removing gases from materials	

\qquad PHYSICS

\qquad

\qquad

A. 9.6×10^{-19} J
B. $8.6 \times 10^{-19} \mathrm{~J}$
\qquad

\qquad PHYSICS

(PHYSICS: HEAT AND THERMODYNAMICS)

\qquad

350)	What is the equation for the entropy of a system S if its two parts 1 and 2 having entropies S_{1} and S_{2}, respectively, are considered in thermal equilibrium?	A
	C. $\mathrm{S}=\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right) / 2 \quad$ D. $\mathrm{S}=\mathrm{S}_{1} \mathrm{~S}_{2}$	
351)	Which of the following statement is not true?	B
	A. For an irreversible process, $\mathrm{dS}>0$ B. Entropy is a conserved quantity	
	C. For a reversible process, $\mathrm{dS}=0 \quad$ D. For an isolated system, $\mathrm{dS} \geq 0$	
352)	The heat capacity of sodium metal is $1500 \mathrm{JK}^{-1}$, if the mass of the sodium metal is 75 kg , the specific heat capacity would be	D
	A. $75 \mathrm{~J} \mathrm{Kg}^{-10} \mathrm{C}^{-1}$ B. $112500 \mathrm{~J} \mathrm{~kg}^{-1{ }^{0} \mathrm{C}^{-1}}$	
	C. $15 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{C}^{-1}$ D. $20 \mathrm{~J} \mathrm{~kg}^{-10} \mathrm{C}^{-1}$	
353)	The amount of energy required to change the liquid into gas and vice versa without any change in temperature is termed as	D
	A. Heat capacity ${ }^{\text {C. L }}$ Latent heat of fusion	
	C. Specific heat capacity ${ }^{\text {d. Latent heat of vaporization }}$	
354)	Thermal energy that is absorbed during the process of melting is called	B
	A. Specific latent heat ${ }^{\text {a }}$ B. Latent heat of fusion	
	C. Latent heat capacity \quad D. None of the above	
355)	In the process of melting, thermal energy is	B
	A. Not required B. Taken in	
	C. Given out D. Neither taken in nor given out	
356)	During boiling process, the temperature of the substance will	D
	A. Increase ${ }^{\text {a }}$ B. Decrease	
	C. Depend on heat capacity of substance ${ }^{\text {d. Remain constant }}$	
357)	If the boiling point of an object id high, then its rate of evaporation will	B
	A. Be fast B. Be slow	
	C. Depend on the density of object D. Depend on the boiling temperature	
358)	If a two sided fair coin and a six faced dice are thrown simultaneously then the probability of getting TAIL for the coin and FIVE for the dice will be	A
	A. $1 / 12$ B. $1 / 8$	
	C. $7 / 12$ D. $1 / 6$	
359)	Statistical methods provide greater accuracy when the number of observations are	A
	A. Very high B. Medium	
	C. Very small D. None of these	
360)	In statistical physics the value of probability of occurrence of an event cannot be	A
	A. Negative ${ }^{\text {B. }}$ Zero	
	C. 1 D. $1 / 2$	
361)	If two events A and B are occurring independently then the probability of occurrence of these two independent events will be equal to	B
	C. A-B D. A/B	
362)	In a two state system if we conduct extremely large number of trails on a fair coin then which of the following is true?	A
	A. There are low fluctuations in the measurement \quad B. Probability of getting heads is high	
	C. There are no fluctuations in the measurement \quad D. Probability of getting tails is high	
363)	For a system to have minimum entropy which of the following statement is true	D
	A. Temperature of the system is below $0 \mathrm{~K} \quad$ B. System is not in thermal equilibrium	

A. 2
B. 4
C. 6
D. 3
378) At room temperature, the root mean square speed of gas molecules is slightly greater than their
A. Average speed
B. Maximum speed
C. Collision speed
D. Terminal speed
379) The linear thermal coefficient of a solid is less than its volume thermal expansion coefficient by a factor of
A. $1 / 2$
B. $3 / 2$
C. 3
D. $5 / 2$
380) The equipartition theorem of energy can be applied under which of the following conditions
A. When ice is melting
B. When water is boiling
C. When gas is liquifying
D. When gas is expanding
381) For isotropic solids the linear thermal coefficient of expansion depends on
A. Length of a material
B. Diameter of a material
C. Volume of a material
D. None of these
382) The Kelvin temperature is numerically equal to the and may be measured by means of a
A. Heavy water temperature, liquid thermometer
B. Ideal gas temperature, gas thermometer
C. Ideal gas temperature, liquid thermometer
D. None of these
383) Which of the following is chosen as the standard thermometric substance?
A. Conducting solid
B. Non-conducting solid
C. Liquid
D. Gas
384) The water has maximum density at 4 C because at this temperature
A. Its mass becomes maximum
B. Its volume becomes maximum
C. Both (A) \& (B)
D. None of these
385) While reducing the volume of a container by keeping is temperature constant, the pressure exerted by the gas molecules on the container walls increases because the molecules
A. Move with high velocities
B. Strike the walls with greater force

C	Strike the walls more frequently

Remain in contact with the walls for a shorter time
D.
386) When a cycle tyre suddenly bursts, the air inside the tyre expands. This process is
A. isothermal
B. adiabatic
C. isobaric
D. isochoric
387) The efficiency of a heat engine working between the freezing point and boiling point of water is

A.	6.25%

B. 0%
C. 26.8%
D. 100%
388) Which of the following temperature scales doesn't have negative numbers?
A. Celsius
B. Kelvin
C. Fahrenheit
D. All of these
389) Which of two temperature change are equivalent?
A. $1 \mathrm{~K}=1 \mathrm{~F}$
B. $1 \mathrm{~F}=1 \mathrm{C}$
C. $1 \mathrm{~K}=1 \mathrm{C}$
D. None of these
390) A container with rigid walls filled with a sample of ideal gas. The absolute temperature of the gas is doubled. What happens to the pressure of the gas?
A. Doubles
B. Triples
C. Decreased to one-half
D. None of these
\qquad PHYSICS

391)	A sample of id temperature sta	ompressed to of the ideal	A
	A. U	B. $1 / 2 \mathrm{U}$	
	C. 2 U	D. 4 U	
392)	The process of heat transfer from object to another because of molecular motion and interaction is called:		B
	A. Convection	B. Conduct	
	C. Radiation	D. Induction	
393)	When we touch a piece of metal and a piece of wood that are placed in the same room, the piece of metal feels much colder than the piece of wood. This happens because of the difference in:		D
	A. Specific heat	B. Tempera	
	C. Density	D. Thermal	
394)	The process of heat transfer by the movement of mass from one place to another is called:		A
	A. Convection	B. Conduct	
	C. Radiation	D. None of	
395)	Which mechanism of heat transfer is involved in heat flow from Sun to Earth?		C
	A. Conduction	B. Convecti	
	C. Radiation	D. Induction	
396)	If the absolute temperature of a radiating object is doubled, by what factor does the rate of energy emission change?		D
	A. 2	B. 4	
	C. 8	D. 16	
397)	Which of the following is a characteristic of an adiabatic process?		C
	A. $\Delta \mathrm{U}=0$	B. $\mathrm{W}=0$	
	C. $\mathrm{Q}=0$	D. $\Delta \mathrm{V}=0$	

(PHYSICS: NUCLEAR PHYSICS)

					Answer Key
398)	In neutral atom, the electrons are bound to the nucleus by.				D
	A.	Magnetic force	B.	Electrostatic force	
	C.	Friction force	D.	Centripetal force	
399)	Minimum energy required to pull nucleus apart is called				D
	A.	Ionization energy	B.	electron affinity	
	C.	chemical energy	P.	binding energy	
400)	Phenomenon in which radiations split matter into ions is called				B
	A.	Denaturing	B.	Ionization	
	C.	Condensation	D.	Atomization	
401)	During second half-life original material is decayed				C
	A.	one quarter	B.	two quarter	
	C.	three quarter	D.	none	
402)	Lifetime of unstable nuclei is.				B
	A.	Limited	B.	unlimited	
	C.	100 years	D.	50 years	
403)	Radiation that does not change its direction inside magnetic field is.				C
	A.	Alpha	B.	beta	
	C.	gamma	P.	x-ray	
404)	An electron traveling at 0.980c has a total energy of				D
	A.	0.511 MeV	B.	0.756 MeV	
	C.	1.736 MeV	D.	2.55 MeV	

405) Particles that participate in the strong nuclear interaction are called.
A. Neutrinos
B. hadrons
C. leptons
D. electrons
406) The fact that the binding energy per nucleon is roughly a constant over most of the range of stable nuclei is a consequence of the fact that the nuclear force is.
A. Short range
3. long range
C. weak
D. strong
407) A certain radioactive element has a half-life of 20 d . The time it will take for $7 / 8$ of the atoms originally present to disintegrate is
A. 20 d
B. 40 d
C. 60 d
D. 80 d
408) In scintillation, the energy of alpha particles is transferred into
A. Energy of fluorescent
B. Energy of ZnS
C. Energy of scintillation
D. Light
409) In electrostatic generator, which are moved downward by the conveyor belt?
A. Atoms
B. Ions
C. Negative Ions
D. none
410) In proton synchrotron the magnet is excited periodically up to:
A. 10,000
B. 15,000
C. 20,000
D. 25,000
411) In electron synchrotron the time of one revolution of electron in the circular orbit is equal to:
A. Amplitude
3. Frequency
C. Period
D. angular frequency
412) Magnetic field modulation is used in:

A.	Cyclotron
C.	

3. Synchrocyclotron
C. Betatron
D. Synchrotron
413) In proton synchrotron a magnet produces a field normal to the
A. Chamber
B. Electric field
C. Proton
D. Quadrants
414) Which one is involved when proton is converted into neutron?
A. - Ve meson
B. + Ve meson
C. $-\mathrm{Ve} \pi^{0}$ meson
D. $+\mathrm{Ve} \pi^{0}$ meson
415) In mass spectrograph, ions remain undeflected if:
A. $q B=m v$
B. $\quad B V=E$
C. $\mathrm{qV}=\mathrm{B}$
D. $\mathrm{Bq}=\mathrm{E}$
416) When the daughter element has a very short half-life and parent element has a very long half-life then
A. $\lambda 1-\lambda 2=0$
B. $\lambda 1>\lambda 2$
C. $\lambda 2>\lambda 1$
D. all
417) Rutherford considered nucleus at the center of atom as a:
A. Positive charge
B. Negative charge
C. Concentrated energy
D. None
418) In radioactive equilibrium, number of atoms of each member element is directly proportional to its:
A. Average life
B. Half-life
C. rate of formation
D. rate of disintegration
419) Constituent components of an atom having mass no. ' A ' and atomic no. ' Z ' is.
A. Z (H1+Nmn)
B. $\mathrm{Zn}(\mathrm{H} 1+\mathrm{Nmn})$
C. $\mathrm{Zm}(\mathrm{H} 1+\mathrm{Nmn})$
D. $\mathrm{Zm}(\mathrm{H} 1+\mathrm{Nm})$
\qquad PHYSICS
420) Which one of the following radiations is extremely penetrating
A. Alpha
B. beta
C. gamma
D. x-ray
421) A travelling wave LINAC can accelerate electrons up to
A. 1000 KeV
B. 1000 MeV
C. 1000 GeV
D. 1000 TeV
422) To impart high energy in F.M. cyclotron the orbit of the ions needs to be:
A. Magnetized
B. expanded
C. energized
P. stabilized
423) A 100 g sample of a radioactive element has a half-life of 5 days. How many grams of radioactive material will remain after 15 days?
A. 100 g
B. 50 g
C. 25 g
P. 12.5 g
424) The correct expression relating the energy E of a particle to its rest mass m_{0}, its momentum p, and the speed of light c , is
A. $E^{2}=p^{2} c^{2}+m_{0} c^{2}$
B. $E^{2}=p^{2} c^{2}+\left(m_{0} c\right)^{2}$
C. $\quad E_{2}=p^{2} \mathrm{c}+\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)^{2}$
P. $E^{2}=p^{2} c^{2}+\left(m_{0} c^{2}\right)^{2}$
425) In liquid drop model, the symmetry effect is known to be inversely proportional to:
A. $\mathrm{A}+2 \mathrm{Z}$
B. A-2Z
C. atomic number
D. mass number
426) Product of Half-life and decay constant is

A.	69.3
C.	

B. 0.693
C. 0.639
D. 63.9
427) Which of the following rays are emitted during radioactivity?
A. Alpha-rays
B. Beta-rays
C. Gamma-rays
D. All the above
428) The difference in the mass of the resultant nucleus and the sum of the masses of two parent nuclear particle is known as
A. Mass defect
B. solid defect
C. weight defect
D. nucleus defect
429) The half-life of radioactive nuclei is.
A. $0.693 / \lambda$
3. $0.793 / \lambda$
C. 0.693λ
D. 0.793λ
430) Energy given to nucleus to dismantle it increases the

A. | C. | Kinetic energy of individual nucleons |
| :--- | :--- |

3. mechanical energy of individual nucleons
C. Potential energy of individual nucleons
D. chemical energy of individual nucleons
431) In scintillation, the energy of alpha particles is transferred into:
A. Energy of fluorescent
B. Energy of ZnS
C. Energy of scintillation
D. Light
432) Nucleus is
A. Positively charged
3. negatively charged
C. neutral
D. charge keeps on changing.
433) Important feature of Pion is that it has:
A. Finite energy
3. Infinite energy
C. Finite range
D. Infinite range
434) Particles which can be added to the nucleus of an atom without changing its chemical properties are.
B. Protons
\qquad

	C.	Neutrons	D.	Alpha particles		
435)	If M is the mass of a nucleus and A is its mass number, then (M-A)/M is called its					
	A.	Binding energy	B.	Fermi energy	D	
	C.	Mass defect	D.	Packing fraction		
436)	The average binding energy of a nucleon inside an atomic nucleus is about.				B	
	A.	8 eV	B.	8 MeV		
	C.	8 J	D.	8 ergs		
437)	Alpha, beta, and gamma radiations come out of a radioactive substance.				A	
	A.	Spontaneously	B.	When it is put in a reactor.		
	C.	When it is heated.	D.	Under pressure		
438)	If the half-life of a radioactive sample is 10 hours, its mean life				A	
	A.	14.4 hours	B.	7.2 hours		
	C.	24 hours	D.	6.93 hours		
439)	When two deuterium nuclei fuse together to form a tritium nucleus, we get a				D	
	A.	neutron	3.	deuteron		
	C.	alpha particle	D.	proton		
440)	One-sixteenth of the initial amount of a radioactive isotope remains undecayed after two hours. The half-life of the isotope is.				C	
	A.	15 min	B.	45 min		
	C.	30 min	D.	60 min		
441)	Cathode rays are.				A	
	A.	stream of electrons	B.	stream of positively charged particles.		
	C.	streams of uncharged particles	D.	Electromagnetic waves		
442)	Positive rays are.				B	
	A.	electromagnetic waves	3.	Ions		
	C.	electrons	D.	neutrons		
443)	The number of electrons in an atom of atomic number Z and mass number A is				A	
	A.	Z	3.	A		
	C.	A-Z	D.	(A-Z)/2		
444)	In stable nuclei, the number of neutrons (N) is related to the number of protons (Z) as				D	
	A.	$\mathrm{N}<\mathrm{Z}$	B.	$\mathrm{N}=\mathrm{Z}$		
	C.	$\mathrm{N}>\mathrm{Z}$	D.	$\mathrm{N} \geq \mathrm{Z}$		
445)	Which of the three basic forces can provide an attraction between two neutrons?				B	
	A.	Electrostatic and nuclear	3.	Gravitational and nuclear		
	C.	Electrostatic and gravitational	D.	Only Nuclear		
446)	The probability of a radioactive atom to survive 5 times longer than its half-life period is				C	
	A.	$2 / 5$	3.	2×5		
	C.	2^{-5}	D.	2^{5}		
447)	Decay rate of a radioactive sample is directly proportional to				C	
	A.	Temperature of sample	B.	Final Amount of sample		
	C.	Initial Amount of sample	D.	All of these		
448)	Lifetime of unstable nuclei is				B	
	A.	Limited	3.	Unlimited		
	C.	100 years	D.	50 years		
449)	The charge on beta particle is				B	
	A.		3.			
		$+2 \mathrm{e}$	D.	None		

450) After two halve lives the number of decayed nuclei of an element are
A. N
B. $\mathrm{N} / 2$
C. $\mathrm{N} / 4$
D. $3 \mathrm{~N} / 4$
451) The amount of energy equivalent to 1 amu is
A. 9.315 MeV
B. 9.315 MeV
C. 931.5 MeV
D. 9315 MeV
452) The rate of decay of radioactive substance
B. Increase with time
A. Remains constant with time
D. May increases or decrease with time
453) Radiations emitted by a radioactive element are
A. Visible
3. Visible by pyrex glass
C. Invisible
D. None
454) The element formed due to radioactive decay is called
A. Parent element
3. Daughter element
C. Mother element
D. Son element
455) A sample contain N radioactive nuclei. After 4 half-lives number of nuclei decayed is
A. $\mathrm{N} / 16$
3. $15 \mathrm{~N} / 16$
C. $\mathrm{N} / 8$
D. $7 \mathrm{~N} / 8$
456) The energy required to break a nucleus of an atom is called
A. Atomic energy
B. Nuclear energy
C. Binding energy
P. Breaking energy
457) Which one the following is not the nuclear radiations
A. Alpha Particle
B. Beta Particle
C. Gamma rays
D. X-Rays

(PHYSICS: ELECTRONICS]

					Answer Key
458) Crystal of Germanium or Silicon in its pure form at absolute zero acts as					C
	A.	A conductor	B.	a semiconductor	
	C.	an insulator	D.	both (a) and (c)	
459)	Computer chips are made from				B
	A. Iron		B.	silicon	
		Helium	D.	strontium	
460)	Whenever a covalent bond breaks it creates				C
	A.	an electron	B. a hole		
	C.	an electron hole pair	D.	a positron	
461)The impurity in the Germanium is usually in the ratio of					

\qquad PHYSICS

(PHYSICS: SOLID STATE PHYSICS)

					Answer Key
518)	A unit cell that contains lattice points only at the corners is known as				A
	A.	Primitive unit cell	B.	Secondary unit cell	
	C.	Layered unit cell	D.	Derived unit cell	
519)	indices of a plane, the intercepts made by the plane on the three crystallographic axes are				A

\qquad PHYSICS

\qquad PHYSICS

Discipline:___PHYSICS

	C.	The concentration of intrinsic carriers will be high	D.	Both A \& B	
557)	Reconstructing Fermi surface on the basis of the empty-lattice model is known as:				B
	A.	Ewald construction	B.	Harrison construction	
	C.	Extrinsic concentration	D.	Intrinsic concentration	
558)	For a given semiconductor then product of electron \&				B
	A.	varies	B.	remains constant	
	C.	changes with temperature	D.	both b \& c	
559)	In intrinsic semiconductor, which relation is correct				A
	A.	$\mathrm{E}(\mathrm{c})-\mathrm{E}(\mathrm{f})=\mathrm{E}(\mathrm{g}) / 2$	B.	$\mathrm{E}(\mathrm{c})+\mathrm{E}(\mathrm{f})=\mathrm{E}(\mathrm{g}) / 2$	
	C.	$\mathrm{E}(\mathrm{c}) / \mathrm{E}(\mathrm{f})=\mathrm{E}(\mathrm{g}) / 2$	D.	$\mathrm{E}(\mathrm{c}) \times \mathrm{E}(\mathrm{f})=\mathrm{E}(\mathrm{g}) / 2$	
560)	In phase space the electrons occupying in the ground states represents by				A
	A.	Points inside k-space	B.	Points outside k-space	
	C.	Points near boundary of k-space	D.	All of these	
561)	Doped atom, when added to an intrinsic semiconductor,				A
	A.	Introduce quantum stated that are close to the edges of the forbidden band	B.	Introduce quantum states that are near the center of the forbidden band	
	C.	Increase the energy of electrons in the valence band	D.	Increase the energy of electrons in the conduction band	
562)	Frenkel defect belongs to which of the following classes?				A
	A.	Point defect	B.	Linear dislocation	
	C.	Interfacial defect	D.	Bulk defect	
563)	In equilibrium state of a PN junction diode				D
	A.	Fermi energy level of P - region is higher than that of N-region	B.	Fermi energy level of N -region is lower than that of P region	
	C.	Fermi energy levels of both the regions are a minimum value	D.	Fermi energy levels of both the regions attend thermal equilibrium	
564)	Lattice points have another name which is called				A
	A.	Lattice site	B.	Lattice arrangement	
	C.	Lattice circle	D.	Lattice array	
565)	Fermi energy level for P-type extrinsic semiconductor lies				B
	A.	At the middle of the band gap	B.	Close to the conduction band	
	C.	Close to the valence band	D.	None of these	
566)	Fermi surface always intersect with zone boundaries				D
	A.	Perpendicularly	B.	Parallel	
	C.	At the slope of zone boundaries	D.	Both A\&C	
567)	In ohmic contact, which is positively charged				A
	A.	Metal	B.	Semiconductor	
	C.	Partially metal and partially semiconductor	D.	None of these	
568)	Which relation is true for p-type semiconductor?				D
	A.	$\mathrm{N}(\mathrm{p})+\mathrm{P}(\mathrm{n})=\mathrm{n}(\mathrm{i}) / \mathrm{p}(\mathrm{i})$	B.	$\mathrm{N}(\mathrm{p}) / \mathrm{P}(\mathrm{p})=\mathrm{n}(\mathrm{i}) \times \mathrm{p}(\mathrm{i})$	
	C.	$\mathrm{N}(\mathrm{n}) \mathrm{P}(\mathrm{p})=\mathrm{n}(\mathrm{i}) \times \mathrm{n}(\mathrm{i})$	D.	None of these	
569)	The intrinsic carrier concentration for germanium at 300 K is				C
	A.	3.4 E19 meter cube	B.	1.4 E 19 meter cube	
	C.	2.4 E19 meter cube	D.	3.9 E19 meter cube	

\qquad PHYSICS

570)	The random motion of holes and free electrons due to thermal agitation is called				A
	A.	Diffusion	B.	Pressure	
	C.	Ionization	D.	None of these	
571)	The defect when an ion occupies an interstitial position in the crystal lattice is called:				C
	A.	Schottky defect	B.	Crystal defect	
	C.	Frenkel defect	D.	None of these	
572)	If $m_{p}=m_{n}$, then the fermi level is exactly in the :				B
	A.	Top of the forbidden fap	B.	Middle of the forbidden gap	
	C.	Bottom of conduction bond	D.	Middle of valence band	
573)	What is the atomic radius of a BCC crystal structure?				B
	A.	$\mathrm{a} / 2$	B.	$\sqrt{3} \mathrm{a} / 2$	
	C.	$\mathrm{a} / \sqrt{ } 2$	D.	None of these	
574)	If work function of metal is less than work function of n - type semiconductor then contact between them is				A
	A.	Rectifying contact	B.	Ohmic contact	
	C.	Lattice contact	D.	Rectify contact	
575)	When a pentavalent impurity is added to a pure semiconductor, it becomes				D
	A.	An insulator	B.	An intrinsic semiconductor	
	C.	p-type semiconductor	D.	n-type semiconductor	
576)	The axial relationship of a rhombohedral crystal system is given as				A
	A.	$\mathrm{a}=\mathrm{b}=\mathrm{c}$	B.	$a=b \neq c$	
	C.	$\mathrm{a} \neq \mathrm{b}=\mathrm{c}$	D.	$a \neq \mathrm{b} \neq \mathrm{c}$	
577)	Which of the following compound shows both Schottky and Frenkel defect?				B
	A.	Silver(I) iodide	B.	Silver(I) bromide	
	C.	Magnesium sulphide	D.	Titanium oxide	

(PHYSICS WAVES AND OSCILLATIONS)

Waves and Oscillations (Dr. Shazia Shukrullah)			Answer Key
578) If frequency of wave is 0.002 Hz then Its time period is			B
	A. 100 s	B. 500 s	
	C. 5000 s	D. 50 s	
579)	An object with a mass M is suspended fro the mass of oscillations is quadrupled, ho	with a spring constant k . The object oscillates with period T. If period of oscillations.	D
	A. The period is decreased by factor four	B. The period is decreased by factor two	
	C. The period is increased by factor four	D. The period is increased by factor two	
580)	Forced vibration are known as		C
	A. Simple harmonic vibration	B. Natural vibration	
	C. Driven harmonic vibration	D. Free vibration	
581)	The distance travelled by the disturbance in one time period is		B
	A. Wave distance	B. Wave velocity	
	C. Wave work	D. Wave number	

\qquad PHYSICS
582) The distance covered by a body in one complete vibration is 20 cm . What is the amplitude of body
A. 5 cm
B. 7.5 cm
C. 10 cm
D. 15 cm
583) Light waves in vacuum are perfectly
B. Scattering
A. Plane
D. Nondispersive
584) Center of the physical pendulum is
A. $\frac{L}{M d}$
B.
1
B. $\frac{I}{M g d}$
C. $\frac{I}{2 \pi M d}$
D. $\frac{I}{M d}$
585) A sound source of frequency 600 Hz is moving towards an observer with velocity $20 \mathrm{~m} / \mathrm{s}$. The speed of sound is $340 \mathrm{~m} / \mathrm{s}$. The frequency herd by observer will be
A. 30 Hz
B. 63.5 Hz
C. 637.5 Hz
D. 630.5 Hz
586) The main principle used in Interference is
B. Superposition Principle
A. Heisenberg's Uncertainty Principle
D. Fermi Principle
C. Quantum Mechanics
587) The displacement of the spectrum to shorter wavelengths in the light coming from distant objects moving toward the observer
A. Red shift
B. Blue shift
C. Orange shift
D. No shift
588) Young’s Double Slit Experiment was conducted in
A. 1801
B. 1885
C. 1920
D. 1930
589) What kind of sources are required for Young's Double Slit experiment
A. Intense
B. Bright
C. coherent
D. Incoherent
590) Doppler effect in sound is
B. Ultrasound machine
A. Echocardiography
D. MRI machine
591) Two coherent sources produce a dark fringe when phase difference between the interfering waves is n integer

A.	2π
C.	

B. $(2 n-1) \pi$
C. n
D. Zero
592) Calculate the angular deviation of the third order bright fringes in radians when light of wavelength illuminates two parallel slits $7.7 \mu \mathrm{~m}$ apart
A. 215
B. 0.215
C. 12.4
D. Zero
593) The position of Zero order bright fringe in double slit experiment is
A. Maximum
B. Zero
C. $\frac{\pi}{d}$
D. $\frac{L}{D}$
594) What is the wavelength of the light, if mirror in interferometer is moved through 0.233 mm and 792 fringes counted with light meter
A. $5.88 \times 10^{-7} \mathrm{~m}$
B. $5.88 \times 10^{7} \mathrm{~m}$

C.	
	$9.88 \times 10^{-7} \mathrm{~m}$

D None of these
595) The power transferred per unit area is equal to
A. Interferometer
B. Intensity of light
C. Power of light
D. Area
596) Which of the following is an electromagnetic wave
B. β rays
A. a rays
C. Yr rays
D. X rays
\qquad PHYSICS
597) The displacement of S.H.M when starts from the mean position is $\mathrm{X}=$
A. $X_{m} \sin (\omega t+\varphi)$
B. $X_{m} \sin (\omega t-\varphi)$
C. $X_{m} \cos (\omega t+\varphi)$
D. $X_{m} \cos (\omega t-\varphi)$
598) The region of the electromagnetic spectrum that allows wavelengths to pass largely un attenuated through the earth atmosphere is called
A. Simple light
B. Violet region
C. Narrow band
D. Optical window
599) Which of the following does not show any interference pattern
A. Excessively thin film
B. Soap bubble
C. A thick film
D. Wedge Shaped film
600) Which of the following is a unique property of laser
A. Directional
B. Speed
C. Coherence
D. Wavelength
601) Zero order fringe can be identified using
A. White light
B. Yellow light
C. Monochromatic light
D. Achromatic light
602) Phase difference between two coherent sources should be
A. Zero
B. 2π
C. π
D. $\pi / 2$
603) what will be the wave velocity if string tension is 3.6 N and its linear density is $25 \mathrm{~g} / \mathrm{m}$
A. $10 \mathrm{~m} / \mathrm{s}$
B. $12 \mathrm{~m} / \mathrm{s}$
C. $16 \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$
604) The average amount of power transmitted in a medium per unit of its cross-sectional area is called
A. Interference
B. Diffraction
C. Wave speed
D. Wave intensity
605) With the propagation of a longitudinal wave through a material medium, the quantities transmitted in the propagation direction are
A. \quad Energy, momentum and mass
B. Energy
C. Energy and mass
D. Energy and linear momentum
606) Which of the following statements is true
A. \quad Both light and sound waves can travel in the vacuum
B. Both light and sound waves in air are transverse
C. The sound waves in air are longitudinal while the light
D. Both light and sound waves in air are longitudinal waves are transverse
607) A particle on the trough of a wave at any instant will come to the mean position after a time
A. $T / 2$
B. $\mathrm{T} / 4$
C. T
D. 2 T
608) If a particle is oscillating on the same horizontal plane in the ground
A. It has only kinetic energy but no potential energy
B. It has only potential energy but no kinetic energy
C. It has both kinetic and potential energies
D. It has neither kinetic nor potential energies
609) When two waves of same amplitude add constructively, the intensity becomes
A. Double
B. Half
C. One-Fourth
D. Four Times
610) Radial line in torsional oscillator is called
A. Torsional constant
B. Torsional line
C. Reference point
D. Reference line
611) The loudness of sound varies directly with the vibrating body's
A. \quad Intensity
B. Amplitude
C. Pitch
D. Quality
612) The human ear responds to intensities in range
A. $10^{-12} \mathrm{Wm}^{-2}$ to $1 \mathrm{Wm}^{-2}$
B. $15 \mathrm{Wm}^{-2}$ to $18 \mathrm{Wm}^{-2}$
C. $10^{8} \mathrm{Wm}^{-2}$ to $2 \mathrm{Wm}^{-2}$
D. $10^{-3} \mathrm{Wm}^{-1}$ to $10^{-6} \mathrm{Wm}^{-1}$
613) What is the frequency of the wave of wavelength 3.27 cm travel with speed of $243 \mathrm{~m} / \mathrm{s}$
A. 1023 Hz
B. 134 Hz
C. 7431 Hz
D. 431 Hz

614)		line or surface on which the disturbance has	ase	at all points is called	A
	A.	Wave front	B.	Wave speed	
	C.	Doppler effect	D.	Newtons Ring	
615)	Calculate the distance between adjacent bright fringes of the green light of wavelength 560 nm and viewing screen is separated 1.2 m from a double-slit source, the distance between the two slits is 0.030 mm				B
	A.	1.2 cm	B.	2.2 cm	
	C.	zero	D.	2.4 cm	
616)	Differentiate the following equation with respect to time$V=-\omega x_{m} \sin (\omega t+\varphi)$				A
	A.	$-\omega^{2} x$	B.	$\omega^{2} x$	
	C.	$\omega x_{m} \cos (\omega t+\varphi)$	D.	$\omega^{2} x \cos (\omega t+\varphi)$	
617)	The magnitude of applied torque is directly proportional to				D
	A.	Velocity	B.	Displacement	
	C.	Acceleration	D.	Angle	
618)	The device used in the Michaelson Morley experiment was				C
	A.	Telescope	B.	Plain Grating	
	C.	Interferometer	D.	Prism	
619)	What is the name of the force that causes oscillatory motion				C
	A.	Damping force	B.	Driving force	
	C.	Restoring force	D.	Oscillating force	
620)	Periodic motion is motion in which				D
	A.	An object moves in a circle	B.	An object moves with constant velocity	
	C.	An object moves with constant acceleration	D.	An object returns to its initial position at some later time	
621)	When the movable mirror of a Michaelson Interferometer is shifted through $0.0589 \mathrm{~mm}, 200$ fringes cross the field. What is the wavelength of the light				A
	A.	5890 A	B.	$5245 \AA$	
	C.	$4965 \AA$	D.	$6894 \AA$	
622)	Which of the following is not periodic motion				B
	A.	A mass oscillating on a spring	B.	Projectile motion	
	C.	A swinging pendulum	D.	A planet orbiting the sun	
623)	Which differential equation describes the motion of a mass on a spring				A
	A.	$\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0$		$\frac{d^{2} x}{d t^{2}}+\frac{m}{k} x=0$	
	C.	$\frac{d^{2} x}{d t^{2}}+x=0$		$\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x^{2}=0$	
624)	When travelling wave is a sin or cos function of ($\mathrm{x}+\mathrm{Vt}$) is called				A
	A. Plane progressive wave		B. Nonharmonic wave		
		Wave function	D.	Wave force	
625)	In vibratory motion				D
		P.E. remains constant	B.	K.E. remains constant	
		Total energy remains constant	D.	Total momentum remains constant	
626)	The space occupied by a compression or space occupied by a rarefaction is equal to				B
	A.	$\frac{\lambda}{4}$	B.	λ	
	C.	2λ	D.	$\frac{\lambda}{2}$	
627)	An object of mass 1.53 kg is attached to the bottom of a vertical spring makes 72 complete oscillations in 180s. Find its force constant				D
	A.	$6.6 \mathrm{~m} / \mathrm{s}^{2}$		$8.6 \mathrm{~m} / \mathrm{s}^{2}$	
		$9 \mathrm{~m} / \mathrm{s}^{2}$		$9.6 \mathrm{~m} / \mathrm{s}^{2}$	

\qquad PHYSICS

C. 10^{6}
D. 10^{13}
643) The material used for the core of a transformer:
A. Soft Magnetic Materials
B. Hard Magnetic Materials
C. Dia-magnetic Materials
D. Steel
644) Which of the following material has only bulk modulus?
A. Concrete
B. Mercury
C. Water
D. Both B \& C
645) The area of hysteresis loop is the measure of:
A. Hysteresis loss
B. Heat dissipated
C. Work done against domain
D. All of these
646) Conductors have conductivities of the order of:
A. $10^{3}(\Omega \mathrm{~m})^{-1}$
B. $10^{7}(\Omega \mathrm{~m})^{-1}$
C. $10^{-7}(\Omega \mathrm{~m})^{-1}$
D. $10^{-6}(\Omega \mathrm{~m})^{-1}$
647) Area under the stress-strain curve is:
A. Work done
B. Energy
C. Energy per unit area
D. Energy density
648) A metallic wire is stretched by suspending weight to it. If ε is the longitudinal strain and Y is its Young's modulus then energy density will be:

A.	$\mathrm{Y} \varepsilon^{2}$
C.	$\frac{1}{2} Y^{2} \varepsilon$

B. $\frac{1}{2} Y \varepsilon$
D. $\frac{1}{2}$ stress \times strain 2
649) The slope of stress-strain curve of a typical ductile material is equal to:
A. Energy stored
B. Energy density
C. Stress per unit area
D. Young's modulus
650) The bond that exists in a semiconductor is:
A. Ionic bond
B. Covalent bond
C. Metallic bond
D. Hydrogen bond
651) In insulators:
A. the valence band is partially filled with electrons
B. the conduction band is partially filled with electrons
C. the conduction band is filled and the valence band is
D. the conduction band is empty and the valence band is empty
fully filled
652) The dimension of stress is similar to the dimension of:
A. Strain
B. Modulus of elasticity
C. Torque
D. Force
653) Above curie temperature iron is:
A. Paramagnetic
B. Diamagnetic
C. Ferromagnetic
D. Nom-magnetic
654) Very weak magnetic signals are detected by:
A. Magnetic resonance imaging
B. X-ray machine
C. Squid
D. Oscilloscope
655) In a hysteresis loop, a ferromagnetic specimen attains its saturation state of magnetism at:
A. Instantaneous value of A.C.
B. Peak values of A.C.
C. First quarter of A.C. cycle only
D. R. M. S. value of A.C.
656) The magnetic fields produced by electron in an atom is due to:
A. Spin motion
B. Orbital motion
C. Both A \& B
D. Wave motion
657) A material with high retentivity and large coercivity is useful to make:
A. Electromagnet
B. Permanent magnet
\qquad PHYSICS
C. Choke
D. Core of transformer
658) Two wires of copper have lengths in the ratio $1: 2$ and radii in the ratio $2: 1$, their Young's modulus are in the ratio:
A. $1: 1$
B. $1: 8$
C. $4: 1$
D. $8: 1$
659) The hysteresis loop can be drawn for
material:
A. Diamagnetic
B. Paramagnetic
C. Ferromagnetic
D. Both A \& C
660) In terms of which of the following properties, metals are better than ceramics? In terms of which of the following properties, metals are better than ceramics:
A. Hardness
B. Ductility
C. Toughness
D. Yield strength
661) Which of the following is true for polymers?
A. They have very high molecular mass
B. They do not have a linear stress-strain curve
C. They have high strength to mass ratio
D. All of the mentioned
662) The point coordinates of the vertex just opposite to the origin are:
A. 000
B. 001
C. 011
D. 111
663) Miller indices for perpendicular planes are always the.
A. Same
B. Different
C. Negative
D. None of these
664) Most Bravais lattices are of the type:
A. \quad Primitive unit cell
B. Body centered unit cell
C. End centered unit cell
D. Face centered unit cell
665) In which of the following Bravais lattices, not all axial angles are right angles?
A. Tetragonal
B. Rhombohedral
C. Orthorhombic
D. Cubic
666) Coordination number for an ideal BCC metallic crystal is:
A. 8
B. 6
C. 12
D. Varies with different metals
667) In Bragg's equation [$\mathrm{n} \lambda=2 \mathrm{~d} \sin \theta$], θ is the angle between:
A. \quad specimen surface and incident rays
B. normal to specimen surface and incident rays
C. parallel lattice surfaces d distance apart and incident
. normal to parallel lattice surfaces d distance apart and incident rays
668) X-rays have larger wavelengths than which of the following?
A. Gamma rays
B. Beta rays
C. Microwave
D. Visible light
669) X-ray diffraction patterns are used for studying crystal structure of solids because:
A. $\begin{aligned} & \text { They have very high energy; hence they can } \\ & \text { penetrate through solids }\end{aligned}$
B. They are electromagnetic radiation, and hence do not
. penetrate through solids
B. interact with matter (crystals)
C. $\begin{aligned} & \text { Their wav } \\ & \text { distances }\end{aligned}$
D. Their high frequency enables rapid analysis
670) Crystallinity -------- with increasing rate of cooling of a liquid.
A. Increases
B. Decreases
C. Remains unchanged
D. None of these
671) Iron has a Body-Centered Cubic (BCC) structure with atomic radius $0.123 \AA$. Find the lattice constant.
A. $0 \AA$
B. $4.587 \AA$
C. $2.314 \AA$
D. $0.2840 \AA$
672) Which of the following covalent compounds conduct electricity?
A. Silica
B. Hydrogen chloride
C. Diamond
D. Graphite
\qquad PHYSICS
673) Which of the following substances possess the highest elasticity?
A. Rubber
B. Steel
C. Glass
D. Copper
A. $2 \times 10^{8} \mathrm{Nm}^{-2}$
B. $5 \times 10^{6} \mathrm{Nm}^{-2}$
C. $0.5 \times 10^{-6} \mathrm{Nm}^{-2}$
D. $0.2 \times 10^{-6} \mathrm{Nm}^{-2}$
677) Materials that undergo plastic deformation before breaking are called
A. Brittle
B. Ductile
C. Amorphous
D. Polymers
678) Any alteration produced in shapes length or volume when a body is subjected to some external force is called:
A. Stiffness
B. Toughness
C. Extension
D. Deformation
679) The Curie temperature is that at which:
A. Semiconductor becomes conductors
B. Ferromagnetic becomes paramagnetic
C. Paramagnetic becomes diamagnetic
D. Metals become superconductor
680) A ferromagnet will become fully magnetized at:
A. High voltage A.C
B. Low voltage A.C
C. Alternating current at its peak value
D. D.C current at peak value
681) Materials in which valence electrons are tightly bound to their atoms at low temperature are called
A. Semiconductors
B. Superconductors
C. Insulator
D. Conductors
682) The band theory of solids explains satisfactorily the nature of:
A. Electrical insulators alone
B. Electrical conductors alone
C. Electrical semiconductors alone
D. All of the above
683) A vacant or partially filled band is called:
A. Conduction band
B. Valence band
C. Forbidden band
D. Empty band
684) What type of bonding makes up ceramic materials?
A. Covalent bonds
B. London dispersion forces
C. Metallic bonds
D. Ionic bonds
685) The maximum attainable stress for a metal is called:
A. Yield stress
B. fracture stress
C. maximum stress
D. ultimate tensile stress
686) All are attributes of ceramics, except:
A. covalent bonded
B. low melting point
C. high stiffness
D. High hardness
687) All are not attributes of metals, except:
A. electrical insulators
B. thermal insulators
C. high melting points
D. ductile
688) Below are examples of plastic deformation, except:
A. a wire coiled 10 times around a magnetic core
B. broken glass
C. bent nail in wood
D. molded clay
689) The larger the spring constant, the spring would be more:
\qquad PHYSICS

(PHYSICS (OPTICS AND LASERS)

\qquad PHYSICS

	C.	All of these	D.	Transmit	A
717)	Snell's law relates				B
	A. Light Reflection		B. Light Refraction		
	C. Light Transmission		D. Light Absorption		
718)	Optically active crystals rotate the?				C
	A.	Vibrating plane	B.	Interference plane	
	C.	Polarization plane	D.	Diffraction plane	
719)	When light incident normally on thin film, the path difference depends upon?				D
	A.	Thickness of the film only	B.	The angle of incidence only	
	C.	Nature of the film only	D.	All thickness, nature, and angle of incidence	
720)	Huygen wave theory explain?				A
	A. Diffraction		B. Polarization		
	C. interference		D. Photoelectric effect		
721)	According to Einstein, light travels from one place to another in the form of?				B
	A. Waves		B. Photons		
	C. particles		D. None of these		
722)	Which one of the following is nearly monochromatic light?				B
	A.	Light from a fluorescent tube	B.	Light from a sodium lamp	
	C.	Light from a mercury lamp	D.	Light from a simple lamp	
723)	Two sources of light are coherent if they emit rays of?				C
	A.	Same wavelength	B.	Same wavelength with a constant phase difference	
	C.	The same amplitude of vibration	D.	Same amplitude and wavelength	
724)	In Young's double slit experiment, the fringe spacing is equal to ($\mathrm{d}=$ =slit separation and $\mathrm{D}=$ distance of the screen from slits):				C
	A.	d $\lambda \mathrm{D}$	B.	$2 \lambda \mathrm{~d} / \mathrm{D}$	
	C.	$\lambda \mathrm{D} / \mathrm{d}$	D.	$\lambda \mathrm{d} / \mathrm{D}$	
725)	In the Young double-slit experiment, if white light is used?				B
	A.	Alternate dark and bright fringes will be seen	B.	Colored fringes will be seen	
	C.	No interference fringes will be seen	D.	Impossible to predict	
726)	In an interference pattern:				D
	A.	Bright fringes are wider than dark fringes	B.	Dark fringes are wider than bright fringe	
	C.	Dark fringes are wider than bright fringe	D.	Both dark and bright fringes are of equal width	
727)	In Young's double-slit experiment, the separation between the slit is halved and the distance between the slit and screen is doubled. The fringe width is				D
		Remain the same	B.	Double	
				Quadrupled	
728)	When one mirror of a Michelson Interferometer is moved a distance of 0.5 mm , we observe 2000 fringes. What will be a wavelength of light used?				B
	A.	5000 nm	B.	500 m	
	C.	$5000 \mathrm{~A}^{\circ}$	D.	$2000 \mu \mathrm{~m}$	
729)	Light on passing through a Polaroid is?				A
	A.	Plane polarized	B.	Un-polarized	
	C.	Circularly polarized	D.	Elliptically polarized	
730)	Which one of the following cannot be polarized?				B
	A.	Radio waves	B.	Ultraviolet rays	
	C.	X-rays	D.	Ultrasonic waves	
731)	In a double-slit experiment, if one of the two-slit is covered then?				A
	A.	No interference fringes are observed	B.	No fringes observed	

Discipline:___PHYSICS

750) Central spot of Newton's rings			A
	A. Bright	B. Dark	
	C. Dark for large wavelength	D. Bright for large wavelength	
751) Diffraction fringes are			B
	A. Equally spaced	B. The distance between then decreases	
	C. The distance between them increases	D. They are adjacent with no space in between	
752)	A thing that emits its own light is		A
	A. Luminous	B. Non-luminous	
	C. Incandescent	D. Bright	
753)	Optical active crystals rotates the		B
	A. vibrating plane	B. polarization plane	
	C. diffraction plane	D. interference plane	
754)	Which is not optically active?		C
	A. Sugar	B. Tartaric acid	
	C. Water	D. sodium chlorate	
755)	Light reaches the earth form sun in nearly		D
	A. 15 minutes	B. 8 minutes	
	C. 10 minutes	D. 8 minutes 30 second	
756)	appearance of color in thin films is due to		C
	A. Diffraction	B. Dispersion	
	C. Interference	D. polarization	
757)	The blue color of the sky is due to		B
	A. Diffraction	B. Scattering	
	C. Polarization	D. Reflection	

(PHYSICS: MMP)

Discipline: \qquad PHYSICS
C. Newton integral
D. Gauss Integral
766) Laplace's use of generating functions was similar to what is now known as the
A. p-transform
B. z -transform
C. s-transform
D. e-transform
767) Laplace transform of 1 is
A. $1 / \mathrm{s}$
B. s
C. $\mathrm{s} / 2$
D. $2 / \mathrm{s}$
768) The Laplace transform for continuous time signals is a
A. Time domain approach
B. Frequency domain approach
C. Distance domain approach
D. Coordinated domain approach
769) $Y^{\prime \prime}+$ ay' + by $=2 x$ is a _ODE
A. Non-linear
B. Homogenous
C. Non-homogenous
D. Linear and non-homogenous
770) What is another name for the gamma function?
A. Euler's integral of the first kind
B. Euler's integral of the second kind
C. The beta function
D. The zeta function
771) A system consisting of two particles moves on a plane. Then the degree of freedom is
A. 2
B. 3
C. 4
D. 6
772) For a conservative holonomic dynamical system, the Lagrangian L , kinetic energy T and potential energy V are connected by
A. $\mathrm{L}=\mathrm{T}+\mathrm{V}$
B. $\mathrm{L}=\mathrm{T}-\mathrm{V}$
C. $\mathrm{L}=2 \mathrm{~T}+\mathrm{V}$
D. $\mathrm{L}=2 \mathrm{~T}-\mathrm{V}$
773) Kinematics is concerned with
A. the physical causes of the motion
B. The condition under which no motion is apparent
C. The geometry of the motion
D. None of these
774) The basis of polynomial interpretation is
A. Taylor's Theorem
B. Weierstrass Approximation Theorem
C. Rolle's Theorem
D. Mean Value Theorem
775) "Mathematical Expectation of the product of two random variables is equal to the product of their expectations" is true for
A. Any two random variables
B. If the random variables are independent
C. If the covariance between the random variables is non
D. If the variance of the random variable are equal zero
776) The domain where function $f(x)=2 x^{2}-1$ and $g(x)=1-3 x$ are equal, is
A. $\{1 / 2\}$
B. $\{2\}$
C. $\{1 / 2,2\}$
D. $\{1 / 2,-2\}$
777) Domain of the function $\cos ^{-1}(4 \mathrm{x}-1)$ is
A. $(0,1 / 2)$
B. $[0,1 / 2]$
C. $[1 / 2,2]$
D. None of these
778) The number of real solutions of the equation $|\mathrm{x}|^{2}-3|\mathrm{x}|+2=0$
A. 4
B. 1
C. 3
D. 2
779) The number of the real solutions of the equation $\mathrm{x}^{2}-3|\mathrm{x}|+2=0$
A. 2
B. 4
C. 1
D. 3
780) In Bessel's function, $\mathrm{P}_{\mathrm{n}}(1)=$
A. 0
B. -1
C. Equal to $\mathrm{P}_{\mathrm{n}}(-1)$
D. 1
781) In Bessels's function, $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ is a
A. Non-terminating series
B. Oscillatory series
C. Terminating series
D. None of these
782) In Bessel's function, $\mathrm{P}_{\mathrm{n}}(-1)=$

A.	-1
C.	

B. 0
C. 1
D. $(-1)^{\mathrm{n}}$
783) The numbers which can be put in the form of p / q where p, q belong to $\mathrm{Z} \mathrm{q} \neq$,0 are
A. Rational numbers
B. Irrational numbers
\qquad PHYSICS

	A.	Scalar	B.	Resultant
	C.	Unit vector	D.	Null vector

Misc. questions

\qquad PHYSICS

909)	A monochromatic source of light gives light of		A
	A. one color	B. two color	
	C. seven color	D. none of these	
910)	The frequency of sound when the source is moving away from the stationary listener		B
	A. increases	B. decreases	
	C. remains same	D. none of these	
911)	Time rate of change of angular momentum is called		D
	A. force	B. flux	
	C. momentum	D. torque	
912)	In photoelectric effect the energy of emitted photon increases with the		A
	A.Frequency of incident light C.	B. Intensity of incident light	
	C. Both of these	D. None of these	
913)	A transformer works on the principle of		B
	A. self-induction	B. mutual induction	
	C. Gauss's law	D. none of these	
914)	An AC voltage has peak value of 25 V . What is its root mean square value?		C
	A. 1.5 V	B. 1.7 V	
	C. 17.7 V	D. 23.2 V	
915)	A transformer is designed to change 220 V to 9.0 V . What is the turn ratio?		B
	A. 16.4	B. 24.4	
	C. 36.4	D. 48.4	
916)	The efficiency of Carnot engine operating between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ is		D
	A. infinite	B. 10%	
	C. 100%	D. none of these	
917)	A force of 10 N acts on a body to a distance of 10 meter. The work done is		C
	A. 10 J	B. 10 W	
	C. 100 J	D. 100 W	
918)	According to the theory of relativity:		D
	A. moving clocks run fast	B. energy is not conserved in high speed collisions	
	C. the speed of light must be measured relative to the ether	D. none of the above are true	
919)	The Stern-Gerlach experiment makes use of:		B
	A. a strong uniform magnetic field	B. a strong non-uniform magnetic field	
	C. a strong uniform electric field	D. a strong non-uniform electric field	
920)	Radio waves are readily diffracted around buildings whereas light waves are negligibly diffracted around buildings. This is because radio waves:		B
	A. are plane polarized	B. have much longer wavelengths than light waves	

\qquad PHYSICS

\qquad

\qquad PHYSICS

\qquad

